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UPPER BOUNDS FOR RADIUS PROBLEMS INVOLVING

RATIOS OF ANALYTIC FUNCTIONS

GURPREET KAUR

Abstract. In recent years, the problem of finding the sharp radii bounds
for certain properties in geometric function theory has attracted several re-

searchers. However, there are several instances where only lower bounds for

the radius problems have been established. In this paper, we have worked in a
similar direction to compute the upper bounds in these cases which coincides

with the conjectured values. Moreover, explicit functions are provided which

yield that these bounds are attainable.

1. Introduction

For α ∈ [0, 1), let P(α) be the class of complex-valued analytic functions p defined
in the open unit disk D := {z ∈ C : |z| < 1} with the normalization p(0) = 1 and
satisfying Re p(z) > α for all z ∈ D. Set P := P(0). Let A be the class of analytic
functions f defined in D with f(0) = 0 = f ′(0)− 1 and S be its subclass consisting
of univalent functions. By making use of the concept of subordination, Ma and
Minda [6] integrated several subclasses of functions which map D onto a starlike
domain and defined the class S∗(ϕ) (for a specific ϕ) consisting of functions f ∈ A
with zf ′(z)/f(z) ≺ ϕ(z) for all z ∈ D, where the function ϕ is univalent, with
positive real part that maps D onto a domain symmetric with respect to real axis
and starlike with respect to ϕ(0) = 1 and ϕ′(0) > 0. Given two subsets F1 and F2

of A, the F2-radius of the class F1, denoted by RF2(F1) ∈ (0, 1] is the largest R
such that for every f ∈ F1, r

−1f(rz) ∈ F2 for each r ≤ R. By making use of the
class P(α), Lecko et al. [5] introduced the class

G :=

{
f ∈ A :

f

g
∈ P ,

g

zp
∈ P

(
1

2

)
for some g ∈ A, p ∈ P

}
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and determined the S∗(ϕ)-radius for several choices of ϕ. However, we are concerned
specifically with the five choices of ϕ, namely

ϕPAR(z) := 1 +

(
2

π2
log

(
1 +

√
z

1−
√
z

)2
)
,

ϕe(z) := ez, ϕC = 1 + (4/3)z + (1/4)z2, ϕ$(z) := 1 +
√
z − z2/2 and ϕR(z) =

1+(zk+ z2)/(k2−kz), k =
√
2+1. These classes were investigated in [4,8–10,14].

Lecko et al. [5] calculated lower radii bounds RS∗(ϕ)(G) for the classes S∗
PAR :=

S∗(ϕPAR) [5, Theorem 3(ii), p. 9], S∗
e [5, Theorem 4(ii), p. 10], S∗

C [5, Theorem
5(ii), p. 11], S∗

$ [5, Theorem 7(ii), p. 14] and S∗
R [5, Theorem 8(ii), p. 15]. However

these obtained bounds were not sharp. In Section 2, we compute the upper bounds
of RS∗(ϕ)(G) for ϕPAR, ϕe, ϕC , ϕ$ and ϕR, which coincide with the conjectured
values given by Lecko [5, p. 21].

In 2019, Cho et al. [3] introduced and studied the class S∗
sin := S∗(1 + sin z). In

the last section, we determine the upper bounds of S∗
sin-radius for the classes Hi

(i = 1, 2, 3) given by

Hi =

{
f ∈ A :

∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ < 1 for some g ∈ A with Re

(
g(z)

ψi(z)

)
> 0

}
,

where the functions ψi ∈ A are given by z/(1 − z)2 and z/(1 + z) for i = 1, 2
respectively, and

H3 =

{
f ∈ A :

∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ < 1 for some g ∈ A with Re

(
g(z)

ζ(z)

)
> 0, ζ ∈ S∗(α)

}
.

Here, S∗(α) is the class of starlike functions of order α, for 0 ≤ α < 1. The classes
H1, H2 andH3 were studied by Sebastian and Ravichandran [12], Ahmad El-Faqeer
et al. [1] and Madhumitha and Ravichandran [7]. Sebastian and Ravichandran [12,
Theorem 2.2(vi), p. 91] and Ahmad El-Faqeer et al. [1, Theorem 2.2(vi), p. 523]
determined the non-sharp bounds for the classes H1 and H2 respectively. However,
S∗
sin-radius was not computed by Madhumitha and Ravichandran [7, Theorem 2.2,

p. 10].
The following lemmas will be needed for the investigation,

Lemma 1.1. [2, Lemma 4, p. 182] If p ∈ P(1/2), then

Re

(
zp′(z)

p(z)

)
≥ − |z|

1 + |z|
for |z| ≤ 1

3
.

Lemma 1.2. [13, Lemma 2, p. 239] If p ∈ P(α), 0 ≤ α < 1, then

Re

(
zp′(z)

p(z)

)
≤
∣∣∣∣zp′(z)p(z)

∣∣∣∣ ≤ 2r(1− α)

(1− r)(1 + (1− 2α)r)
, |z| = r.

2. Radius constants for G

In this section, we will compute the upper bounds of S∗(ϕ)-radius for class G for
five different choices of ϕ. The function f0 : D → C defined by

f0(z) =
z(1 + z)2

(1− z)3
with g0(z) =

z(1 + z)

(1− z)2
and p0(z) =

1 + z

1− z
(1)

belongs to the class G as p0 ∈ P, g0/zp0 ∈ P(1/2) and f0/g0 ∈ P. Also,
zf ′0(z)/f0(z) = (1 + 5z)/(1− z2).
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Theorem 2.1. The upper bounds of S∗(ϕ)-radius for the class G, are given by the
following table:

S. No. S∗(ϕ) RS∗(ϕ)(G) ≤ rϕ

(a) S∗
PAR rPAR = 5− 2

√
6 ≈ 0.1010

(b) S∗
e re =

5e

2
−

√
4− 4e+ 25e2

2
≈ 0.127622

(c) S∗
C rC =

15−
√
217

2
≈ 0.13454

(d) S∗
$ r$ =

(5−
√
41− 12

√
2)(

√
2 + 1)

2
≈ 0.118317.

(e) S∗
R rR =

(5−
√
81− 40

√
22)(

√
2 + 1)

4
≈ 0.0345119

Proof. Let f ∈ G with associated functions g ∈ A and p ∈ P. Then the functions
p1, p2 : D → C defined by p1 = f/g and p2 = g/zp belong to the classes P and
P(1/2) respectively. Moreover f(z) = zp(z)p1(z)p2(z), which gives

Re

(
zf ′(z)

f(z)

)
= 1 + Re

(
zp′1(z)

p1(z)

)
+Re

(
zp′2(z)

p2(z)

)
+Re

(
zp′(z)

p(z)

)
. (2)

Using Lemmas 1.1 and 1.2 in (2), we obtain

Re

(
zf ′(z)

f(z)

)
≥ 1− r

1 + r
− 4r

1− r2
=

1− 5r

1− r2
for |z| = r <

1

3
. (3)

(a) Let ΩPAR = ϕPAR(D) = {w ∈ C : Rew > |w − 1|} = {a + ib : 2a −
b2 − 1 > 0}. Note that a necessary condition for zf ′(z)/f(z) to lie inside ΩPAR is
Re(zf ′(z)/f(z)) > 1/2. Consequently, (3) yields

Re

(
zf ′(z)

f(z)

)
≥ 1− 5r

1− r2
>

1

2

which holds provided r < rPAR := 5 − 2
√
6. Thus RS∗

PAR
(G) ≤ rPAR. In order to

show that this bound is attainable, we consider the function f0 given by (1). For
this, we prove that w = zf ′0(z)/f0(z) ∈ ΩPAR for |z| < rPAR. For z = reit and
u = cos t, a straightforward calculation gives

2a− b2 − 1 =
hPAR(r, u)

(1 + r2 − 2ru)2(1 + r2 + 2ru)2
,

where w = a+ ib and hPAR(r, u) = −(1− 23r2− 50r4− 27r6− r8+10ru− 10r3u−
30r5u−10r7u+21r2u2+46r4u2+29r6u2−20r3u3+60r5u3+4r4u4). The problem
now reduces to show that the function hPAR(r, u) > 0 for r < rPAR and u ∈ [−1, 1].
Observe that the roots of hPAR(r, u) = 0 in (0, 1) are increasing as a function of
u ∈ [−1, 1]. As a result, it follows that hPAR(r, u) > 0 for −1 ≤ u ≤ 1 if and only if

hPAR(r,−1) = 1− 10r − 2r2 + 30r3 − 30r5 + 2r6 + 10r7 − r8 > 0,

which gives r < rPAR (Figure 1(a)). Thus f0(rPARz)/rPAR ∈ S∗
PAR as shown in

Figure 1(b).
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(a) hPAR(r,−1) for r ∈ (0, 1)
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(b) zf ′
0(z)/f0(z)

Figure 1. RS∗
PAR

(G)

(b) Consider Ωe = ϕe(D) = {w ∈ C : | logw| < 1} .Observe that Re(zf ′(z)/f(z)) >
1/e is a necessary condition for zf ′(z)/f(z) to lie inside Ωe. In view of Lem-
mas 1.1 and 1.2 in (3), we obtain (1 − 5r)/(1 − r2) > 1/e which implies that

r < re := (5e−
√
4− 4e+ 25e2)/2. To establish f0(rez)/re ∈ S∗

e , consider the func-
tion f0 given by (1). Geometrical considerations show that zf ′0(z)/f0(z) lies inside
Ωe for |z| < re (Figure 2) and

zf ′0(z)

f0(z)
=

1

e
at z = −re.

Thus f0(rez)/re ∈ S∗
e .
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Figure 2. RS∗
e
(G)

(c) Let ΩC = ϕC(D) =
{
w = a+ ib : (9a2 + 9b2 − 18a+ 5)2 < 16(9a2 + 9b2 − 6a+ 1)

}
.

In this case, if w = zf ′(z)/f(z) ∈ ΩC then it is necessary that Re(zf ′(z)/f(z)) >
1/3. Using the similar analysis carried out in the previous parts, it follows that

(1 − 5r)/(1 − r2) > 1/3 for r < rC := (15 −
√
217)/2. Therefore RS∗

C
(G) ≤ rC .
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Furthermore, consider the expression (9a2+9b2−18a+5)2−16(9a2+9b2−6a+1)
where w = zf ′0(z)/f0(z) = a+ ib. For z = reit and u = cos t, this simplifies to

hC(r, u)

(1 + r2 − 2ru)2(1 + r2 + 2ru)2
,

where hC(r, u) = 3(−16 − 1800r2 + 13299r4 − 466r6 + 3r8 − 320ru − 1040r3u +
12380r5u+140r7u+6944r4u2 +2732r6u2 +1280r3u3 +1600r5u3 +256r4u4). The
roots of the equation hC(r, u) = 0 in (0, 1) are increasing as a function of u ∈ [−1, 1].
Hence hC(r, u) < 0 for u ∈ [−1, 1] if and only if

hC(r,−1) = −3(2− r)(1 + 3r)(2− 15r + r2) < 0

for r < rC (Figure 3(a)). Therefore, f0(rCz)/rC ∈ S∗
C . The image of the subdisk

|z| < rC under the function zf ′0(z)/f0(z) is illustrated in Figure 3(b).
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(a) hC(r, u) for r ∈ (0, 0.2)
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(b) zf ′
0(z)/f0(z)

Figure 3. RS∗
C
(G)

(d) Let Ω$ = ϕ$(D) =
{
w ∈ C : |w2 − 1| < 2|w|

}
. A necessary condition for

w = zf ′(z)/f(z) to lie inside Ω$ is Re(zf ′(z)/f(z)) > 2(
√
2 − 1). From (3), we

obtain (1− 5r)/(1− r2) > 2(
√
2− 1) provided r < r$ := (5−

√
41− 12

√
2)(

√
2 +

1))/2. This bound is attainable. To see this, consider the expression |w2 − 1|2 −
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4|w|2 = 1 + a4 − 2b2 + b4 + 2a2(b2 − 3) where w = zf ′0(z)/f0(z) = a+ ib and f0 is
given by (1). If z = reit and u = cos t, then

1 + a4 − 2b2 + b4 + 2a2(b2 − 3) =
h$(r, u)

(1 + r2 − 2ru)2(1 + r2 + 2ru)2
,

where h$(r, u) = p(r, u)q(r, u) with p(r, u) = −2 − 25r2 + r4 − 20ru + 10r3u and
q(r, u) = 2− 21r2 + r4 − 10r3u− 8r2u2. We observe that

∂p(r, u)

∂u
= 10r(r2 − 2) < 0

and thus p(r, u) is a decreasing function of u for each r ∈ (0, 1). Therefore p(r, u) ≤
p(r,−1). But p(r,−1) = −2 + 20r − 25r2 − 10r3 + r4 < 0, if 0 < r < r$(Figure
4(a)) which yields p(r, u) < 0 for 0 < r < r$ and for all u ∈ [−1, 1].

In order to show that h$(r, u) < 0 for 0 < r < r$, it suffices to show that
q(r, u) > 0 there, for all u ∈ [−1, 1]. As

∂q(r, u)

∂u
= −2r2(8u+ 5r),

therefore q(r, u) attains its local maxima at u0 = −5r/8. Also, q(r, u) is increasing
for u ∈ [−1, u0) and decreasing for (u0, 1]. Also, we see that q(r,−1) − q(r, 1) =
20r3 > 0. Consequently, it follows that q(r, u) attains its local minima at u = 1.
As q(r, 1) = 2− 29r2 − 10r3 + r4 > 0 for 0 < r < s0 where

s0 =
5− 5

√
2 +

√
83− 54

√
2

2
≈ 0.252145

(Figure 4(b)), therefore q(r, u) ≥ q(r,−1) > 0 for 0 < r < s0. Since r$ < s0, we
conclude that h$(r, u) < 0 for u ∈ [−1, 1] and 0 < r < r$. Hence f0(r$z)/r$ ∈
S∗
$. The Figure 4(c) depicts the image of zf ′0(z)/f0(z) under the subdisk |z| < r$.

(e) An analytic function f ∈ S∗
R if and only if zf ′(z)/f(z) ≺ ϕR(z). This

infers that a necessary condition for zf ′(z)/f(z) ≺ ϕR(z) is Re(zf ′(z)/f(z)) >

2(
√
2 − 1). By (3), we have (1 − 5r)/(1 − r2) > 2(

√
2 − 1) which gives r < rR :=

(
√
81− 40

√
2)(

√
2 + 1)/4. For the function f0 given by (1), Figure 5 depicts that

the quantity zf ′0(z)/f0(z) lies inside ϕR(D) for |z| < rR and

zf ′0(z)

f0(z)
= 2(

√
2− 1) at z = −rR.

Thus f0(rRz)/rR ∈ S∗
R. □

3. Radius constants for Hi

In this section, we determine the upper bounds of S∗
sin-radius for the classes Hi

for i = 1, 2, 3. Apart from Lemmas 1.1 and 1.2, we shall make use of the following
lemma to prove our results.

Lemma 3.3. [11, Lemma 2.1, p. 267 ] If p ∈ P(α), 0 ≤ α < 1, then∣∣∣∣p(z)− 1 + (1− 2α)r2

1− r2

∣∣∣∣ ≤ (1− α)r

1− r2
|z| = r.

Theorem 3.2. The upper bounds of S∗
sin-radius for the classes Hi are given by the

following table:
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(c) zf ′
0(z)/f0(z)

Figure 4. RS∗
$
(G)
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Figure 5. RS∗
R
(G)

Proof. Let f ∈ Hi for i = 1, 2. Then there exists an analytic function g such
that the function q = g/f ∈ P(1/2). Observe that a necessary condition for
zf ′(z)/f(z) ≺ ϕsin(D) is Re(zf ′(z)/f(z)) < 1 + sin 1.



8 GURPREET KAUR EJMAA-2024/12(1)

S. No. Hi RS∗
sin

(Hi) ≤ ri

(a) H1 r1 = (csc 1)(
√

4 + sin2 1− 2) ≈ 0.201801

(b) H2 r2 =

√
27− 2 cos 2 + 4 sin 1− 5

2(1 + sin 1)
≈ 0.158985

For (a), the function p1 : D → C defined by p1(z) = g(z)(1 + z)/z is a member
of class P. Note that

zf ′(z)

f(z)
=
zp′1(z)

p1(z)
− zq′(z)

q(z)
+

1

1 + z
. (4)

By making use of Lemmas 1.1 and 1.2 in (4), we obtain

Re

(
zf ′(z)

f(z)

)
= Re

(
zp′1(z)

p1(z)

)
− Re

(
zq′(z)

q(z)

)
+Re

(
1

1 + z

)
≤ 2r

1− r2
+

r

1 + r
+

1

1− r
for |z| < 1

3

=
1 + 4r − r2

1− r2
< 1 + sin 1,

which yields r < r1 := (csc 1)(
√

4 + sin2 1 − 2). Thus RS∗
sin

(H1) ≤ r1. Consider
the function

f1(z) =
z(1− z)2

(1 + z)2
with g1(z) =

z(1− z)

(1 + z)2

belonging to the class H1. Figure 6 depicts that the value zf ′1(z)/f1(z) lies inside
ϕsin(D) for |z| < r1 and

zf ′1(z)

f1(z)
= 1− sin 1 at z = r1.

0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

Figure 6. RS∗
sin

(H1)
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(b) Let f ∈ H2. Then the function p2 : D → C defined as p2(z) = g(z)(1− z)2/z
is a member of P. For f(z) = zp2(z)/(q(z)(1− z)2), note that

zf ′(z)

f(z)
=
zp′2(z)

p2(z)
− zq′(z)

q(z)
+

1 + z

1− z
. (5)

Using Lemmas 1.1 and 1.2, (5) takes the form

Re

(
zf ′(z)

f(z)

)
= Re

(
zp′4(z)

p4(z)

)
− Re

(
zq′(z)

q(z)

)
+Re

(
1 + z

1− z

)
≤ 2r

1− r2
+

r

1 + r
+

1 + r

1− r
for |z| < 1

3

=
1 + 5r

1− r2
< 1 + sin 1,

which holds for r < r2 := (
√
27− 2 cos 2 + 4 sin 1 − 5)/(2 + 2 sin 1). This gives

RS∗
sin

(H2) ≤ r2. Observe that the bound r2 can be attained. This can be seen by
considering the function

f2(z) =
z(1 + z)2

(1− z)3
with g2(z) =

z(1 + z)

(1− z)3
.

Then f2 ∈ H2 and the fact that zf ′2(z)/f2(z) lies inside ϕsin(D) for |z| < r2 is
illustrated in Figure 7 wherein

zf ′2(z)

f2(z)
= 1 + sin 1 at z = r2.

Hence f2(r2z)/r2 ∈ S∗
sin. □

0.5 1.0 1.5

-1.0
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0.5
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Figure 7. RS∗
sin

(H2)

Theorem 3.3. The upper bound of S∗
sin-radius for the class H3 is given by

rα =

{
sα, for 0 ≤ α ≤ 1/2
tα, for 1/2 ≤ α ≤ 1

where

sα :=
5− 2α−

√
27− 20α+ 4α2 − 2 cos 2 + 4 sin 1

2(2α− sin 1− 1)
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and

tα :=
2α− 5 +

√
27− 20α+ 4α2 − 2 cos 2− 4 sin 1 + 8α sin 1

2(2α+ sin 1− 1)
.

Proof. Let f ∈ H3. Then the functions h1, h2 : D → C defined by h1 = g/f ∈
P(1/2) and h2 = g/ζ ∈ P satisfy f(z) = ζ(z)h2(z)/h1(z) and therefore

zf ′(z)

f(z)
=
zh′2(z)

h2(z)
− zh′1(z)

j1(z)
+
zζ ′(z)

ζ(z)
. (6)

For zf ′(z)/f(z) ≺ ϕsin(z), one of the necessary condition is Re(zf ′(z)/f(z)) <
1 + sin 1. In accordance with Lemmas 1.1, 1.2 and 3.3 in (6), we obtain

Re

(
zf ′(z)

f(z)

)
= Re

(
zh′2(z)

h2(z)

)
− Re

(
zh′1(z)

h1(z)

)
+Re

(
zζ ′(z)

ζ(z)

)
≤ 2r

1− r2
+

r

1 + r
+

1 + r − 2αr

1− r
for |z| < 1

3

=
1 + (5− 2α)r − 2αr2

1− r2
< 1 + sin 1,

which yields r < sα. In order to prove the sharpness, consider the functions

fα(z) =
z(1 + z)2

(1− z)3−2α
, gα(z) =

z(1 + z)

(1− z)3−2α
and ζα(z) =

z

(1− z)2−2α
.

Then fα ∈ H3 and zf
′
α(z)/fα(z) = ϕsin(1) = 1+sin 1 at z = sα. However the bound

sα is not sharp for the whole range of α. For instance, zf ′α(z)/fα(z) does not map
the sub-disk |z| < sα inside ϕsin(D) for α = 3/4. This is illustrated in Figure 8(a).
As a result, we will employ another necessary condition Re(zf ′(z)/f(z)) > 1− sin 1
for the subordination zf ′(z)/f(z) ≺ ϕsin(z) to hold. By making use of Lemmas 1.2
and 3.3 in (6), we obtain

Re

(
zf ′(z)

f(z)

)
≥ 1− r + 2αr

1 + r
− 2r

1− r2
− r

1− r

=
1− (5− 2α)r − 2αr2

1− r2
> 1− sin 1,

which gives r < tα. In this case, zf ′α(z)/fα(z) = ϕsin(−1) = 1 − sin 1 at z = −tα
and the values zf ′α(z)/fα(z) does not lie in ϕsin(D) for α = 1/4 (Figure 8(b)). Now
we will compare sα and tα to compute the desired sharp bound. Clearly Figure 8(c)
shows that min{sα, tα} = sα for 0 < α ≤ 1/2 and min{sα, tα} = tα for 1/2 ≤ α < 1.

□
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