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AVERAGING PRINCIPLE FOR BSDES DRIVEN BY

FRACTIONAL BROWNIAN MOTION WITH NON LIPSCHITZ

COEFFICIENTS

SADIBOU AIDARA, BIDJI NDIAYE, AHMADOU BAMBA SOW

Abstract. Stochastic averaging for a class of backward stochastic differential

equations with fractional Brownian motion, of the Hurst parameter H in the

interval
(
1
2
, 1

)
, is investigated under the non-Lipschitz condition. An averaged

fractional BSDEs for the original fractional BSDEs is proposed, and their solu-

tions are quantitatively compared. Under some appropriate assumptions, the

solutions to original systems can be approximated by the solutions to averaged
stochastic systems, both in the sense of mean square and also in probability.

The stochastic integral used throughout the paper is the divergence-type inte-
gral.

1. Introduction

The backward stochastic differential equations (BSDEs in short) were first stud-
ied by Pardoux and Peng [14] and have the following type:

Yt = ξ +

∫ T

t

g (r, Yr, Zr) dr −
∫ T

t

ZrdWr, t ∈ [0, T ], (1)

where {Wt : 0 ≤ t ≤ T} is a d-dimensionnal Brownian motion defined on the proba-
bility space (Ω,F ,P) with the natural filtration {Ft : 0 ≤ t ≤ T}, the terminal value
ξ is square integrable and g is mapping from Ω× [0, T ]×R×Rd to R. They proved
that equation (1) has a unique, adapted, and square-integrable solution when g is
globally Lipschitz. This pioneering work was extensively used in many fields, like
the stochastic interpretation of solutions to PDEs and financial mathematics. Since
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then, several authors have investigated BSDEs (see, among others, [3, 9, 12]). In
all the above works, one notices that the coefficients of SDEs are usually assumed
to satisfy the Lipschitz condition. However, many practical models of SDEs do
not satisfy the Lipschitz condition. In view of the pressing need, the importance,
and the impact on many diverse applications, it is necessary and also significant to
consider some weaker conditions than the Lipschitz one. Fortunately, Mao [11] and
Wang [15] have given much weaker conditions, which are regarded as the so-called
non Lipschitz conditions.

In the present paper, we study a stochastic averaging technique for a class of the
following FrBSDEs:

Yt = ξ +

∫ T

t

f(s, ηs, Ys, Zs)ds−
∫ T

t

ZsdB
H
t , t ∈ [0, T ], (2)

where
(
BHt
)
t≥0 is the fractional Brownian motion, and {ηt}0≤t≤T is the solution

of a stochastic differential equation driven by fractional Brownian motion. It’s im-
portant to know that the stochastic averaging principle, which is usually used to
approximate dynamical systems under random fluctuations, has a long and rich
story in multiscale problems (see [13]).
Recently the averaging principle for BSDEs driven by two mutually independent
fractional Brownian motions was studied by S. Aidara, Y. Sagna and I.Faye. We
present an averaging principle and prove that the original FrBSDEs can be ap-
proximated by averaged FrBSDEs in the sense of mean square convergence and
convergence in probability when a scaling parameter tends to zero.

The rest of the paper is arranged as follows: In Section 2, we recall some defini-
tions and results about fractional stochastic integrals and the related Itô formula.
In Section 3, we investigate the averaging principle for the fractional BSDEs under
some proper conditions.

2. Fractional stochastic calculus

In this section, we shall recall some important definitions and results concerning
the Malliavin calculus, the stochastic integral with respect to a fractional Brownian
motion, and Itô’s formula.

Let Ω be a non-empty set, F a σ−algebra of sets of Ω and P a probability
measure defined on F . The triplet (Ω,F ,P) defines a probability space and E the
mathematical expectation with respect to the probability measure P.

Let us recall that, for H ∈ (0, 1), a fractional Brownian motion
(
BH(t)

)
t≥0 with

Hurst parameter H is a continuous and centered Gaussian process with covariance

E[BH(t)BH(s)] =
1

2

(
t2H + s2H − |t− s|2H

)
, t, s ≥ 0.

Denote φ(x) = H(2H − 1)|x|2H−2, x ∈ R.
Let ξ and η be measurable functions on [0, T ]. Define

〈η, ξ〉t =

∫ t

0

∫ t

0

φ(u− v)ξ(u)η(v)dudv and ‖ξ‖2t = 〈ξ, ξ〉t.

Note that, for any t ∈ [0, T ], 〈η, ξ〉t is a Hilbert scalar product.
Let H be the completion of the set of measurable functions such that

‖ξ‖2t < +∞.
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For a polynomial function of k variables f , let PT be the set of all polynomials of
fractional Brownian motion of the form

F (ω) = f

(∫ T

0

ξ1(t)dBHt (ω),

∫ T

0

ξ2(t)dBHt (ω), . . . ,

∫ T

0

ξk(t)dBHt (ω)

)
where (ξn)n∈N be a sequence in H such that 〈ξi, ξj〉T = δij .

The Malliavin derivative of F ∈ PT is given by

DH
s F =

k∑
i=1

∂f

∂xi

(∫ T

0

ξ1(t)dBHt ,

∫ T

0

ξ2(t)dBHt , . . . ,

∫ T

0

ξk(t)dBHt

)
ξi(s), 0 ≤ s ≤ T.

It is well known that the divergence operator DH : L2(Ω, F,P) → (Ω, F,H) is
closable. Hence we can consider the space D1,2 is the completion of PT with the
norm

||F ||21,2 = E|F |2 + E||DH
s F ||2T .

We define DHs F =

∫ T

0

φ(s−r)DH
r Fdr and denote by L1,2

H the space of all stochastic

processes F : (Ω,F ,P) −→ H such that

E

(
‖F‖2T +

∫ T

0

∫ T

0

|DHs Ft|2dsdt

)
< +∞.

We have the following (see [5, Proposition 6.25])

Theorem 2.1. If F ∈ L1,2
H , then the Itô-Skorohod type stochastic integral

∫ T
0
FsdB

H
s

exists in L2(Ω, F,P) and satisfies

E

(∫ T

0

FsdB
H
s

)
= 0 and E

(∫ T

0

FsdB
H
s

)2

= E

(
‖F‖2T +

∫ T

0

∫ T

0

DHt FsDHs Ftdsdt

)
.

The following integration by parts given in [5, Theorem 11.1] will be useful in
the sequel

Theorem 2.2. Let fi(s), gi(s), i = 1, 2, are in D1,2 and

E

∫ T

0

(|fi(s)|+ |gi(s)|) ds < +∞.

Assume that DHt f1(s) and DHt f2(s) are continuously differentiable w.r.t (s, t) ∈
[0, T ]× [0, T ] for almost all ω ∈ Ω. Suppose that

E

∫ T

0

∫ T

0

∣∣DHt fi(s)∣∣2 dsdt < +∞

and denote Xi(t) =

∫ t

0

gi(s)ds+

∫ t

0

fi(s)dB
H
s , i = 1, 2.

Then we have for 0 ≤ t ≤ T ,

X1(t)X2(t) =

∫ t

0

X1(s)g2(s)ds+

∫ t

0

X1(s)f2(s)dBHs +

∫ t

0

X2(s)g1(s)ds

+

∫ t

0

X2(s)f1(s)dBHs +

∫ t

0

DHs X1(s)f2(s)ds+

∫ t

0

DHs X2(s)f1(s)ds.
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Let us finish this section by giving an Itô formula for the divergence type integral
(see [5, Theorem 10.3]).

Theorem 2.3. Let f and g : [0, T ]→ R be deterministic continuous functions. If

Xt = X0 +

∫ t

0

gsds+

∫ t

0

fsdB
H
s , 0 ≤ t ≤ T,

where X0 is a constant and if ϕ ∈ C1,2([0, T ]×R,R), then for 0 ≤ t ≤ T

ϕ(t,Xt) = ϕ(0, X0)+

∫ t

0

∂ϕ

∂s
(s,Xs)ds+

∫ t

0

∂ϕ

∂x
(s,Xs)dXs+

∫ t

0

∂2ϕ

∂x2
(s,Xs)

[
d

ds
||f ||2s

]
ds.

(3)
where

d

ds
||f ||2s =

d

ds

∫ s

0

∫ s

0

φ(u− v)fu fv du dv

= 2fs

∫ s

0

φ(u− s) fu du.

In order to present a stochastic averaging principle, we need the following [16,
Lemma 1]

Lemma 2.1. Let BHt be a fractional Brownian motion with 1
2 < H < 1, and

u(s) be a stochastic process in L1,2
H . For every T < +∞, there exists a constant

C0(H,T ) = HT 2H−1 such that

E

(∫ T

0

|u(s)| dBHs

)2
 ≤ C0(H,T )E

[∫ T

0

|u(s)|2 ds

]
+ C0T

2.

3. Averaging Principle for FrBSDEs

3.1. Fractional BSDEs. Let us consider the following process

ηt = η0 +

∫ t

0

b(s)ds+

∫ t

0

σ(s)dBHs 0 ≤ t ≤ T,

where η0, b and σ satisfy:

•: η0 ∈ R is a given constant;
•: b, σ : [0, T ]→ R are continuous deterministic, σ is differentiable and σ(t) 6=

0, t ∈ [0, T ].

Note that, since

‖σ‖2t = H(2H − 1)

∫ t

0

∫ t

0

|u− v|2H−2σ(u)σ(v)dudv,

we have

d

dt

(
‖σ‖2t

)
= σ(t)σ̂(t) > 0 where σ̂(t) =

∫ t

0

φ(t− v)σ(v)dv, 0 ≤ t ≤ T.

Given ξ a measurable real-valued random variable and the function

f : Ω× [0, T ]×R×R×R→ R,

we consider the BSDEs driven by fractional Brownian motion

Yt = ξ +

∫ T

t

f (r, ηr, Yr, Zr) dr −
∫ T

t

ZrdB
H
r , 0 ≤ t ≤ T (4)
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We introduce the following sets (where E denotes the mathematical expectation
with respect to the probability measure P) :

•: C1,2

pol
([0, T ] × R) is the space of all C1,2-functions over [0, T ] × R, which

together with their derivatives are of polynomial growth,

•: V[0,T ] =

{
Y (·) = ψ(·, η·); ψ ∈ C1,2

pol
([0, T ]×R),

∂ψ

∂t
is bounded, t ∈ [0, T ]

}
,

•: Ṽ HT the completion of V[0,T ] under the following norm∥∥∥∥Y ∥∥∥∥
Ṽ HT

=

(∫ T

0

t2H−1E[|Y (t)|2]dt

)1/2

=

(∫ T

0

t2H−1E[|ψ(t, ηt)|2]dt

)1/2

.

•: B2([0, T ],R) = Ṽ
1/2
[0,T ] × Ṽ

H
[0,T ] is a Banach space with the norm∥∥∥∥ (Y, Z)

∥∥∥∥2
B2

=

∥∥∥∥Y ∥∥∥∥2
Ṽ

1
2
T

+

∥∥∥∥Z∥∥∥∥2
Ṽ HT

•: Q be the set of all nondecreasing, continuous and concave functions:
ρ(.) : R+ → R+ satisfying ρ(0) = 0, ρ(s) > 0 for s > 0 and∫ +∞

0

du

ρ(u)
= +∞.

For any ρ ∈ Q, we can find a pair of positive constants a and b such that
ρ(v) ≤ a+ bv for all v ≥ 0.

Definition 3.1. A pair of processes (Yt, Zt)0≤t≤T is called a solution to the FrB-
SDEs (4), if it satisfies eq.(4) with (Y,Z) ∈ B2([0, T ],R).

Let us recall the following result given in [10, Proposition 17] : Assume that

there exists K̃ > 0 such that f and g are K̃−Lipschitz functions. Then eq. (4) has

a unique solution (Yt, Zt)0≤t≤T ∈ Ṽ 1/2
[0,T ] × Ṽ

H
[0,T ].

The next result (we omit the proof since it is an adaptation of Lemma 4.2 in [6])
is required in the proof of Proposition 3.1.

Lemma 3.2. Assume that h1 and h2 ∈ C0,1

pol
([0, T ]×R) such that∫ t

0

h1(s, ηs)ds+

∫ t

0

h2(s, ηs)dB
H
s = 0, 0 ≤ t ≤ T.

Then we have

h1(s, x) = h2(s, x) = 0. 0 ≤ s ≤ T, x ∈ R.

Thanks to this result, we have the representation given in [?, Proposition 25]
and in the proof of [1, Proposition 3.6]. Let (Yt, Zt)0≤t≤T be a solution of the
FrBSDEs (4). Then:
(i) We have the stochastic representation

DYt =
σ̂(t)

σ(t)
Zt, 0 ≤ t ≤ T,

(ii) There exists a constant M > 0 such that

t2H−1

M
≤ σ̂(t)

σ(t)
≤Mt2H−1, 0 ≤ t ≤ T.
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Thanks to these preliminary results, we are now in a position to investigate our
main subject.

3.2. An averaging principle. In this section, we will investigate the averaging
principle for the FrBSDEs under non Lipschitz coefficients. Let us consider the
standard form of the equation (4):

Y εt = ξ + ε2H
∫ T

t

f (r, ηεr , Y
ε
r , Z

ε
r ) dr − εH

∫ T

t

ZεrdB
H
r , t ∈ [0, T ]; (5)

where ηεt = η0 + ε2H
∫ t

0

b(s)ds+ εH
∫ t

0

σ(s)dBHs , t ∈ [0, T ].

According to the second part, equation (5) also has an adapted unique and
square-integrable solution. We will examine whether the solution Y εt can be ap-
proximated to the solution process Y t of the simplified equation:

Y t = ξ + ε2H
∫ T

t

f
(
ηεr , Y r, Zr

)
dr − εH

∫ T

t

ZrdB
H
r , t ∈ [0, T ]; (6)

where
(
Y t, Zt

)
has the same properties as (Y εt , Z

ε
t ).

We assume that the coefficients f and f are continuous functions and satisfy the
following assumption:

• (A1) For all (t, x, yi, zi) ∈ [0, T ]×R×R×R , i = 1, 2, we have

|f(t, x, y1, z1)− f(t, x, y2, z2)|2 ≤ ρ
(
|y1 − y2|2

)
+ ρ

(
|z1 − z2|2

)
• (A2) For any t ∈ [0, T1] ⊂ [0, T ] and for all (x, y, z) ∈ R×R×R, we have

1

T1 − t

∫ T1

t

∣∣f(s, x, y, z)− f(x, y, z)
∣∣2 ds ≤ φ(T1 − t)

(
1 + ρ

(
|y|2
)

+ ρ
(
|z|2
))

where φ(T1) is a bounded function.

In what follows, we establish the result which will be useful in the sequel.

Lemma 3.3. Suppose that the original FrBSDEs (5) and the averaged FrBSDEs
(6) both satisfy the assumptions (A1) and (A2). For a given arbitrarily small
number u ∈ [0, t] ⊂ [0, T ], there exist L1 > 0 and C2 > 0 such that

E

[∫ T

u

s2H−1
∣∣Zεs − Zs∣∣2 ds

]
≤ L1E

[∫ T

u

∣∣Y εs − Y s∣∣2 ds
]

+ C2 (T − u) . (7)

Proof. Let us define ∆δ
ε

s = δεs − δs for a process δs ∈ {Ys, Zs}.
It is easily seen that the pair of processes

(
∆Y

ε

t ,∆Z
ε

t

)
0≤t≤T

solves the FrBSDEs

∆Y
ε

t = ε2H
∫ T

t

(
f(s, ηεs , Y

ε
s , Z

ε
s )− f(ηεs , Y s, Zs)

)
ds−εH

∫ T

t

∆Z
ε

sdB
H
s , t ∈ [0, T ].

Applying Itô’s formula to
∣∣∣∆Y εt ∣∣∣2, we obtain∣∣∣∆Y εt ∣∣∣2 + εH

∫ T

u

DHs ∆Y
ε

s∆Z
ε

sds =2ε2H
∫ T

u

∆Y
ε

s

(
f(s, ηεs , Y

ε
s , Z

ε
s )− f(ηεs , Y s, Zs)

)
ds

− 2εH
∫ T

u

∆Y
ε

s∆Z
ε

sdB
H
s (8)
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Using the fact that
(

∆Y
ε

s,∆Z
ε

s

)
t≤s≤T

∈ Ṽ
1/2
[0,T ] × Ṽ

H
[0,T ] and V[0,T ] ⊂ L1,2

H (see

Lemma 8 in [?]) which implies in fact Fs = ∆Y
ε

s∆Z
ε

s ∈ L1,2
H . Then by Theorem

2.1, we have

E

[∫ T

0

∆Y
ε

s∆Z
ε

sdB
H
s

]
= 0

Hence we deduce from (8)

E

[∣∣∣∆Y εt ∣∣∣2 + εH
∫ T

u

DHs ∆Y
ε

s∆Z
ε

sds

]
= 2ε2HE

[∫ T

u

∆Y
ε

s

(
f(s, ηεs , Y

ε
s , Z

ε
s )− f(ηεs , Y s, Zs)

)
ds

]

≤ 2ε2HE

[∫ T

u

∆Y
ε

s

(
f(s, ηεs , Y

ε
s , Z

ε
s )− f(s, ηεs , Y s, Zs)

)
ds

]

+ 2ε2HE

[∫ T

u

∆Y
ε

s

(
f(s, ηεs , Y s, Zs)− f(ηεs , Y s, Zs)

)
ds

]
(9)

= E1 + E2.

For E1, by using the condition (A1) and Holder’s inequality, for any α > 0,
2xy ≤ αx2 + y2/α, we deduce that

E1 ≤αε2HE

[∫ T

u

∣∣∣∆Y εs∣∣∣2 ds
]

+
ε2H

α
E

[∫ T

u

∣∣f(s, ηεs , Y
ε
s , Z

ε
s )− f(s, ηεs , Y s, Zs)

∣∣2 ds]

≤αε2HE

[∫ T

u

∣∣∣∆Y εs∣∣∣2 ds
]

+
ε2H

α
E

[∫ T

u

ρ

(∣∣∣∆Y εs∣∣∣2) ds
]

+
ε2H

α
E

[∫ T

u

ρ

(∣∣∣∆Zεs∣∣∣2) ds
]

≤ε2H
(
α+

b

α

)
E

[∫ T

u

∣∣∣∆Y εs∣∣∣2 ds
]

+
bε2H

α
E

[∫ T

u

∣∣∣∆Zεs∣∣∣2 ds
]

+
2aε2H

α
(T − u)

(10)

For E2, by using assumption (A2), Holder’s inequality and Young’s inequality,
we have

E2 ≤ 2ε2HE

(∫ T

u

∣∣∣∆Y εs∣∣∣2 ds
) 1

2
(∫ T

t

∣∣f(s, ηεs , Y s, Zs)− f(ηεs , Y s, Zs)
∣∣2 ds) 1

2


≤ 2ε2HE

((T − u)

∫ T

u

∣∣∣∆Y εs∣∣∣2 ds
) 1

2
(

1

T − u

∫ T

u

∣∣f(s, ηεs , Y s, Zs)− f(ηεs , Y s, Zs)
∣∣2 ds) 1

2


≤ 2ε2HC1E

(∫ T

u

∣∣∣∆Y εs∣∣∣2 ds
) 1

2


≤ 2ε2HC1E

[∫ T

u

∣∣∣∆Y εs∣∣∣2 ds+ T − u

]

≤ 2ε2HC1E

[∫ T

u

∣∣∣∆Y εs∣∣∣2 ds
]

+ 2ε2HC1 (T − u) ; (11)
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where C1 =

√
(T − u) sup

u≤s≤T
φ(s− u)

[
1 + b sup

u≤s≤T
E(
∣∣Y s∣∣2) + b sup

u≤s≤T
E(
∣∣Zs∣∣2) + 2a

]
.

By the stochastic representation given in Proposition 3.1, we have

E

[∫ T

u

DHs ∆Y
ε

s∆Z
ε

sds

]
≥ E

[
1

M

∫ T

u

s2H−1
∣∣∣∆Zεs∣∣∣2 ds

]
(12)

Putting pieces together, we deduce from (9) that

E

[∣∣∣∆Y εt ∣∣∣2 +
εH

M

∫ T

u

s2H−1
∣∣∣∆Zεs∣∣∣2

s
ds

]
≤ ε2H

(
α+

b

α
+ 2C1

)
E

[∫ T

u

∣∣∣∆Y εs∣∣∣2 ds
]

(13)

+
bε2H

α
E

[∫ T

u

∣∣∣∆Zεs∣∣∣2 ds
]

+

(
2a

α
+ 2C1

)
ε2H (T − u)

Now we can compute

bε2H

α
E

[∫ T

u

∣∣∣∆Zεs∣∣∣2 ds
]

=
bε2H

α
E

[∫ T

u

1

s2H−1
× s2H−1

∣∣∣∆Zεs∣∣∣2 ds
]

≤ bε2H

α
× T 2−2H − u2−2H

2− 2H
E

[∫ T

u

s2H−1
∣∣∣∆Zεs∣∣∣2 ds

]

≤ bε2HT 2−2H

α(2− 2H)
E

[∫ T

u

s2H−1
∣∣∣∆Zεs∣∣∣2 ds

]
(14)

Therefore, we can write

E

[∣∣∣∆Y εt ∣∣∣2 +
εH

M

∫ T

u

s2H−1
∣∣∣∆Zεs∣∣∣2

s
ds

]
≤ ε2H

(
α+

b

α
+ 2C1

)
E

[∫ T

u

∣∣∣∆Y εs∣∣∣2 ds
]

(15)

+
bε2HT 2−2H

α(2− 2H)
E

[∫ T

u

s2H−1
∣∣∣∆Zεs∣∣∣2 ds

]

+

(
2a

α
+ 2C1

)
ε2H (T − u)

Hence if we choose α = α0 satisfying
α0(2− 2H)εH −Mbε2HT 2−2H

α0M(2− 2H)
= ε2H , then

ε2HE

[∫ T

u

s2H−1
∣∣∣∆Zεs∣∣∣2

s
ds

]
≤ ε2H

(
α0 +

b

α0
+ 2C1

)
E

[∫ T

u

∣∣∣∆Y εs∣∣∣2 ds
]

+

(
2a

α0
+ C1

)
ε2H (T − u)

Thus,

E

∫ T

u

s2H−1
∣∣Zεs − Zs∣∣2 ds ≤ L1E

∫ T

u

∣∣Y εs − Y s∣∣2 ds+ C2 (T − u) , (16)

where L1 = α0 +
b

α0
+ 2C1 and C2 =

(
2a
α + 2C1

)
. This completes the proof. �
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Now, we claim the main theorem showing the relationship between solution
processes Y εt to the original (5) and Y t to the averaged (6). It shows that the
solution of the averaged (6) converges to that of the original (5) in the mean square
sense.

Theorem 3.4. Under the assumption of Lemma 3.3 are satisfied. For a given
arbitrarily small number δ1 > 0, there exists ε1 ∈ [0, ε0] and β ∈ [0, 1] such that for
all ε ∈ [0, ε1] having

sup
Tε1−β≤t≤T

E
∣∣Y εt − Y t∣∣2 ≤ δ1.

Proof. With the help of Lemma 3.3, now we can prove the Theorem 3.4. Using the
elementary inequelity and the isometry property, we derive that

E

[∣∣∣∆Y εs∣∣∣2] =E

∣∣∣∣∣ε2H
∫ T

u

[
f(s, ηεs , Y

ε
s , Z

ε
s )− f(ηεs , Y s, Zs)

]
ds− εH

∫ T

u

∆Z
ε

sdB
H
s

∣∣∣∣∣
2


≤2ε4HE

∣∣∣∣∣
∫ T

u

[
f(s, ηεs , Y

ε
s , Z

ε
s )− f(ηεs , Y s, Zs)

]
ds

∣∣∣∣∣
2
+ 2ε2HE

∣∣∣∣∣
∫ T

u

∆Z
ε

sdB
H
s

∣∣∣∣∣
2


≤ 4ε4HE

∣∣∣∣∣
∫ T

u

[
f(s, ηεs , Y

ε
s , Z

ε
s )− f(s, ηεs , Y s, Zs)

]
ds

∣∣∣∣∣
2


+ 4ε4HE

∣∣∣∣∣
∫ T

u

[
f(s, ηεs , Y s, Zs)− f(ηεs , Y s, Zs)

]
ds

∣∣∣∣∣
2
+ 2ε2HE

∣∣∣∣∣
∫ T

u

∆Z
ε

sdB
H
s

∣∣∣∣∣
2


= D1 +D2 +D3; (17)

where D1 = 4ε4HE

∣∣∣∣∣
∫ T

u

[
f(s, ηεs , Y

ε
s , Z

ε
s )− f(s, ηεs , Y s, Zs)

]
ds

∣∣∣∣∣
2
,

D2 = 4ε4HE

∣∣∣∣∣
∫ T

u

[
f(s, ηεs , Y s, Zs)− f(ηεs , Y s, Zs)

]
ds

∣∣∣∣∣
2
 andD3 = 2ε2HE

∣∣∣∣∣
∫ T

u

∆Z
ε

sdB
H
s

∣∣∣∣∣
2
 .

Applying Holder’s inequality and the assumption (A1), we obtain

D1 ≤ 4(T − u)ε4HE

[∫ T

u

∣∣f(s, ηεs , Y
ε
s , Z

ε
s )− f(s, ηεs , Y s, Zs)

∣∣2 ds]

≤ 4(T − u)ε4HE

[∫ T

u

ρ

([∣∣∣∆Y εs∣∣∣2)+ ρ

(∣∣∣∆Zεs∣∣∣2)] ds
]

≤ 4(T − u)bε4HE

[∫ T

u

∣∣∣∆Y εs∣∣∣2 ds
]

+ 4(T − u)bε4H
T 2−2H

2− 2H
E

[∫ T

u

s2H−2
∣∣∣∆Zεs∣∣∣2 ds

]
+ 8(T − u)2aε4H (18)
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Then, together with Holder’s inequality and the assumption (A2), we get

D2 ≤4(T − u)ε4HE

[∫ T

u

∣∣f(s, ηεs , Y s, Zs)− f(ηεs , Y s, Zs)
∣∣2 ds]

≤4(T − u)2ε4HE

[
1

T − u

∫ T

u

∣∣f(s, ηεs , Y s, Zs)− f(ηεs , Y s, Zs)
∣∣2 ds]

≤4(T − u)2ε4H sup
u≤s≤T

[φ(s− u)]

(
1 + sup

u≤s≤T
ρ
(
E
(∣∣Y s∣∣2))+ sup

u≤s≤T
ρ
(
E
(∣∣Zs∣∣2)))

=C3(T − u)2ε4H , (19)

where C3 = 4 sup
u≤s≤T

[φ(s− u)]

(
1 + b sup

u≤s≤T
E
(∣∣Y s∣∣2)+ b sup

u≤s≤T
E
(∣∣Zs∣∣2)+ 2a

)
.

By the Lemma 2.1, we obtain

D3 ≤ 2ε2HHT 2H−1E

[∫ T

u

∣∣∣∆Zεs∣∣∣2 ds
]

+ 2ε2HC0T
2

≤ 2ε2HHT

2− 2H
E

[∫ T

u

s2H−1
∣∣∣∆Zεs∣∣∣2 ds

]
+ 2ε2HC0T

2 (20)

Using above inequalities, from (17) we deduce

sup
u≤t≤T

E

[∣∣∣∆Y εt ∣∣∣2] ≤ (4(T−u)bε4H
T 2−2H

2− 2H
+

2ε2HHT

2− 2H

)
sup

u≤t≤T
E

[∫ T

u

∣∣∣∆Zεs∣∣∣2 ds
]

+ 4(T−u)bε4H sup
u≤t≤T

E

∫ T

u

∣∣∣∆Y εs∣∣∣2 ds+ C3(T−u)2ε4H + 2ε2HC0T
2 + 8(T − u)2aε4H

Applying Lemma 3.3 to the above inequality we get

sup
u≤t≤T

E

[∣∣∣∆Y εt ∣∣∣2] ≤ [4(T−u)bε4H
(

1 + L1
T 2−2H

2− 2H

)
+ L1

2ε2HHT

2− 2H

] ∫ T

u

sup
u≤s1≤s

E
∣∣∣∆Y εs1∣∣∣2 ds

+ ε2H
[

2C2(T−u)

2− 2H

(
2(T−u)bε2HT 2−2H +HT

)
+ C3(T−u)2ε2H + 2C0T

2 + 8(T − u)2aε2H
]
.

(21)

Thanks to Gronwall’s inequality, we obtain

sup
u≤t≤T

E
∣∣∣∆Y εt ∣∣∣2 ≤ε2H[2C1(T−u)

2− 2H

(
2(T−u)bε2HT 2−2H +HT

)
+ C3(T−u)2ε2H

+ 2C0T
2 + 8(T − u)2aε2H

]
e
(T−u)

[
4(T−u)bε4H

(
1+L1

T2−2H

2−2H

)
+L1

2ε2HHT
2−2H

]
.

Obviously, the above estimate implies that there exist β ∈ [0, 1] and K > 0 such
that for every t ∈ (0,Kε−2Hβ ] ⊆ [0, T ],

sup
Kε−2Hβ≤t≤T

E
∣∣Y εt − Y t∣∣2 ≤ C4ε

1−2Hβ , (22)
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in which

C4 =ε2H(1+β)−1
[

2C(T−Kε−2Hβ)

2− 2H

(
2(T−Kε−2Hβ)bε2HT 2−2H +HT

)
+ C3(T−Kε−2Hβ)2ε2H

+ 2C0T
2 + 8(T−Kε−2Hβ)2aε2H

]
e
(T−Kε−2Hβ)

[
4(T−Kε−2Hβ)bε4H

(
1+L1

T2−2H

2−2H

)
+L1

2ε2HHT
2−2H

]

is constant.
Consequently, for any number δ1 > 0, we can choose ε1 ∈ [0, ε0] such that for

every ε1 ∈ [0, ε0] and for each t ∈ (0,Kε−2Hβ ]

sup
Kε−2Hβ≤t≤T

E
∣∣Y εt − Y t∣∣2 ≤ δ1. (23)

This completes the proof. �

With Theorem 3.4, it is easy to show the convergence in probability between
solution processes Y εt to the original (5) and Y t to the averaged (6).

Corollary 3.0. Suppose that the original FrBSDEs (5) and the averaged FrBSDEs
(6) both satisfy the assumptions (A1) and (A2). For a given arbitrary small number
δ2 > 0, there exists ε2 ∈ [0, ε0] such that for all ε ∈ (0, ε2], we have

lim
ε→0

P

(
sup

Kε−2Hβ≤t≤T

∣∣Y εt − Y t∣∣ > δ2

)
= 0 (24)

where β is defined by Theorem 3.4.

Proof. By Theorem 3.4 and the Chebyshev inequality, for any given number δ2 > 0,
we can obtain

P

(
sup

Kε−2Hβ≤t≤T

∣∣Y εt − Y t∣∣ > δ2

)
≤ 1

δ22
E

(
sup

Kε−2Hβ≤t≤T

∣∣Y εt − Y t∣∣2
)
≤ C4ε

1−2Hβ

δ22
.

Let ε→ 0 and the required result follows. �

Remark 1. Corollary 3.0 means the convergence in probability between the original
solution (Y εt , Z

ε
t ) and the averaged solution

(
Y t, Zt

)
.

4. Conclusion

The averaging principle is an effective method for simplifying deterministic sys-
tems as well as stochastic systems. In this paper, we consider the averaging Princi-
ple for BSDEs driven by fractional Brownian motion with non Lipschitz coefficients.
Our contribution is to prove that the original FrBSDEs can be approximated by
averaged FrBSDEs in the sense of mean square convergence and convergence in
probability when a scaling parameter tends to zero.
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