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CONVERGENCE OF THAKUR ITERATION SCHEME FOR

MEAN NONEXPANSIVE MAPPINGS IN HYPERBOLIC SPACES

OMPRAKASH SAHU AND AMITABH BANERJEE

Abstract. The purpose of this paper, we modify the Thakur iteration process

into hyperbolic metric spaces where the symmetry condition is satisfied and
establish strong and ∆- convergence theorems for mean nonexpansive map-

pings in uniformly convex hyperbolic spaces. We provide an example of mean

nonexpansive mapping which is not nonexpansive mapping. Using this exam-
ple and some numerical texts, we infer empirically that the Thakur iteration

process converges faster than the Abbas, Agarwal, Noor, Ishikawa and Mann

iteration process.

1. Introduction

Let (X, d) be a metric space and C be a nonempty closed and convex subset of
X. A mapping T : C → C is said to be

(i) nonexpansive if

d(Tx, Ty) ≤ d(x, y),∀x, y ∈ C.

(ii) mean nonexpansive mapping if

d(Tx, Ty) ≤ ad(x, y) + bd(x, Ty),∀x, y ∈ C.

where a, b ≥ 0 and a+ b ≤ 1.
The class of mean nonexpansive mapping was first introduced by Zhang [27],

who proved that a mean nonexpansive mapping has a fixed point in a weakly
compact convex subset C (with normal structure) of a Banach space. Since then
several authors have studied mean nonexpansive mappings in Banach Spaces. For
examples, Wu and Zhang[25] investigated some properties of mean nonexpansive
mappings and they proved that if a + b < 1, then mean nonexpansive mapping
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has a unique fixed point. In the same year, Zhao[28] proved convergence of Picard
and Mann iteration for mean nonexpansive mappings. In 2007, Gu and Li [10]
proved strong convergence of Ishikawa iteration scheme for mean nonexpansive
mapping in the framework of uniformly convex Banach space. In 2012, Ouahab et
al.[20] studied fixed point result for mean nonexpansive mapping in Hilbert space.
Ouahab et al.[20] introduced modulus of the convexity and Chebyshev radius. In
2014, Zuo [30] proved that mean nonexpansive mapping has approximate fixed-
point sequence, and, under some suitable conditions, we get some existence and
uniqueness theorems of fixed point. In 2015, mean nonexpansive mappings was
introduced and studied in CAT(0) space by Zhou and Cui [29] using the following
Ishikawa iteration for x1 ∈ C, {tn}, {sn} ⊂ [0, 1] define iteratively by{

yn = (1− sn)xn ⊕ snTxn

xn+1 = (1− tn)xn ⊕ tnTyn
(1)

They proved both strong and ∆-convergence theorems for the sequence {xn} gen-
erated by the above iteration.

In 2017, Chen et al. [5] introduced the concept of a mean nonexpansive set-
valued mapping in Banach spaces, and extended Nadler’s fixed point theorem and
Lim’s fixed point theorem to the case of mean nonexpansive set-valued mappings.
In 2018, Akbar et al. [4] introduced a new iterative scheme to approximate the
fixed point of mean nonexpansive mapping in CAT(0) spaces. They proved conver-
gence results for mean nonexpansive mapping in CAT(0) space. In 2021, Ahmad et
al. [3], established weak and strong convergence theorems for mean nonexpansive
maps in Banach spaces under the Picard–Mann hybrid iteration process.

In 2022 Ezeora et al. [8] studied some fixed points properties and demiclosed-
ness principle for mean nonexpansive mappings in uniformly convex hyperbolic
space and established both strong and ∆-convergence theorems for approximating
a common fixed point of two mean nonexpansive mappings using the following iter-
ative scheme introduced by Abbas and Nazir [1]. Let C be a nonempty closed and
convex subset of a complete uniformly convex hyperbolic space X and T, S : C → C
be two mean nonexpansive mappings. For x1 ∈ C, we construct the sequence {xn}
as follows: 

zn = W (xn, Sxn, γn)

yn = W (Szn, T zn, βn)

xn+1 = W (Tyn, Tn, αn)

(2)

where {αn}, {βn} and {γn} are sequences in (0, 1).
Several fixed point results and iterative algorithms for approximating the fixed

points of nonlinear mappings in Hilbert and Banach spaces. It is easier working
with Banach space due to its convex structures. However, metric space do not nat-
urally enjoy this structure. Therefore the need to introduce convex structures to it
arises. The concept of convex metric space was first introduced by Takahashi[23]
who studied the fixed points for nonexpansive mappings in the setting of convex
metric spaces. Since then, several attempts have been made to introduce different
convex structures on metric spaces. An example of a metric space with a convex
structure is the hyperbolic space. Different convex structures have been introduced
on hyperbolic spaces resulting in different definitions of hyperbolic spaces. Al-
though the class of hyperbolic spaces defined by Kohlenbach[14] is slightly more
restrictive than the class of hyperbolic spaces introduced in [9], it is however, more
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general than the class of hyperbolic spaces introduced in[21]. Moreover, it is well-
known that Banach spaces and CAT(0) spaces are examples of hyperbolic spaces
introduced in[14].

It is worth mentioning that, as far as we know, little to no work has been done
on fixed point problems for mean nonexpansive mappings in hyperbolic spaces.
Therefore, it is necessary to extend results on fixed point problems for mean non-
expansive mappings from uniformly convex Banach spaces and CAT(0) spaces to
uniformly convex hyperbolic spaces, since the class of uniformly convex hyperbolic
spaces generalizes the class of uniformly convex Banach spaces as well as CAT(0)
spaces.

Motivated by all these facts, we study some fixed points results for mean non-
expansive mappings in uniformly convex hyperbolic space and establish strong and
∆-convergence theorems for approximating a fixed point of mean nonexpansive
mappings in hyperbolic spaces using the iterative scheme introduced by Thakur et
al.[24].

2. Preliminaries

In this section, we shall discuss some definitions and results to be used in main
results. Our study is in hyperbolic space introduced by Kohlenbach[14]:

Definition 2.1. [14]A hyperbolic space (X, d,W ) is a metric space (X, d) together
with a convex mapping W : X2 × [0, 1] → X satisfying:

(i) d(u,W (x, y, α)) ≤ (1− α)d(u, x) + αd(u, y),
(ii) d(W (x, y, α),W (x, y, β)) = |α− β|d(x, y),
(iii) W (x, y, α) = W (y, x, 1− α),
(iv) d(W (x, z, α),W (y, w, α)) ≤ (1− α)d(x, y) + αd(z, w), for all x, y, z, w ∈ X

and α, β ∈ [0, 1].

Definition 2.2. [22]Let X be a real Banach space which is equipped with norm
||.||. Define the function d : X2 → [0,∞) by

d(x, y) = ||x− y||.

Then, we have that (X, d,W ) is a hyperbolic space with mapping W : X2× [0, 1] →
X defined by W (x, y, α) =(1− α)x+ αy.

Definition 2.3. [22]Let X be a hyperbolic space with a mapping W : X2× [0, 1] →
X.

(i) A nonempty subset C of X is said to be convex if W (x, y, α) ∈ C for all
x, y ∈ C and α ∈ [0, 1].

(ii) X is said to be uniformly convex if for any r > 0 and ϵ ∈ (0, 2], there exists
a δ ∈ (0, 1] such that for all x, y, z ∈ X .

d(W (x, y,
1

2
), z) ≤ (1− δ)r

provided d(x, z) ≤ r, d(y, z) ≤ r and d(x, y) ≥ ϵr.
(iii) A mapping η : (0,∞)× (0, 2] → (0, 1] which provides such a δ = η(r, ϵ) for

a givenr > 0 and ϵ ∈ (0, 2], is known as a modulus of uniform convexity
of X. The mapping η is said to be monotone, if it decreases with r (for a
fixed ϵ).
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Definition 2.4. Let C be a nonempty subset of a metric space X and {xn} be any
bounded sequence in C. For x ∈ X, consider a continuous functional r(., {xn}) :
X → [0,∞) defined by

r(x, {xn}) = lim sup
n→∞

d(xn, x).

The asymptotic radius r(C, {xn}) of {xn} with respect to C is given by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C}.
A point x ∈ C is said to be an asymptotic center of the sequence {xn} with respect
to C ⊆ X if

r(x, {xn}) = inf{r(y, {xn}) : y ∈ C}.
The set of all asymptotic centers of {xn} with respect to C is denoted by A(C, {xn}).
If the asymptotic radius and the asymptotic center are taken with respect to X,
then they are simply denoted byr({xn}) and A({xn}) respectively.
Definition 2.5. [15]A sequence xn in X is said to be ∆-converge to x ∈ X, if x
is the unique asymptotic center of {xnk} for every subsequence {xnk} of {xn}. In
this case, we write ∆− limn→∞ xn = x.

Remark 2.1. [16]We note that ∆-convergence coincides with the usually weak
convergence known in Banach spaces with the usual Opial property.

Lemma 2.0.1. [17]Let X be a complete uniformly convex hyperbolic space with
monotone modulus of uniform convexity η. Then every bounded sequence {xn} in
X has a unique asymptotic center with respect to any nonempty closed convex subset
C of X.

Lemma 2.0.2. [6]Let X be a complete uniformly convex hyperbolic space with
monotone modulus of uniform convexity η and let {xn} be a bounded sequence in X
with A({xn}) = {x}. Suppose {xnk} is any subsequence of {xn} with A({xnk}) =
{x1} and {d(xn, x1)} converges, then x = x1.

Lemma 2.0.3. [13]Let (X, d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η. Let x∗ ∈ X and {tn} be a sequence
in [a, b] for some a, b ∈ (0, 1). If {xn} and {yn} are sequences in X such that
lim supn→∞ d(xn, x

∗) ≤ c,lim supn→∞ d(yn, x
∗) ≤ c and limn→∞ d(W (xn, yn, tn), x

∗) =
c, for some c > 0. Then limn→∞ d(xn, yn) = 0.

Definition 2.6. Let C be a nonempty subset of a hyperbolic space X and {xn}
be a sequence in X. Then {xn} is called a Fejer monotone sequence with respect
to C if for all x ∈ C and n ∈ N ,

d(xn+1, x) ≤ d(xn, x).

Proposition 2.1. [11] Let {xn} be a sequence in X and C be a nonempty subset
of X. Suppose that T : C → C is any nonlinear mapping and the sequence {xn} is
Fejer monotone with respect to C, then we have the following:

(i) {xn} is bounded.
(ii) The sequence {d(xn, x

∗)} is decreasing and converges for all x∗ ∈ F (T ).
(iii) limn→∞ d(xn, F (T )) exists.

Theorem 2.1.1. [8]Let C be a nonempty closed and convex subset of a hyperbolic
space X. Let T : C → C be a mean nonexpansive mapping with b < 1 and F (T ) ̸=
ϕ, then F (T ) is closed and convex.
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Theorem 2.1.2. [8]Let C be a nonempty closed and convex subset of complete
uniformly convex hyperbolic space X with monotone modulus of convexity η. Let
T : C → C be mean nonexpansive mapping with b < 1 and {xn} be a bounded
sequence in C such that limn→∞ d(xn, Txn) = 0 and ∆ − limn→∞ xn = x∗. Then
x∗ ∈ F (T ).

3. Main Results

First, we extend the Thakur et al.[24] iteration process into the hyperbolic metric
spaces. For x1 ∈ C, we construct the sequence {xn} as follows:

xn+1 = W (Txn, Tyn, αn)

yn = W (zn, T zn, βn)

zn = W (xn, Txn, γn), n ∈ N.

(3)

where {αn}, {βn} and {γn} are sequences in (0, 1).

3.1. Strong and ∆-convergence Theorems for Mean Nonexpansive Map-
pings.

Lemma 3.1.1. Let C be a nonempty closed and convex subset of a hyperbolic
space X. Let T : C → C be a mean nonexpansive mappings with F (T ) ̸= ϕ and the
sequence {xn} is defined by (3) then limn→∞ d(xn, x

∗) exists for each x∗ ∈ F (T ).

Proof. Let x∗ ∈ F (T ), then from (3) we have

d(zn, x
∗) = d(W (xn, Txn, γn), x

∗)

≤ (1− γn)d(xn, x
∗) + γnd(Txn, x

∗)

≤ (1− γn)d(xn, x
∗) + γn[ad(xn, x

∗) + bd(xn, x
∗)]

= (1− γn + aγn + bγn)d(xn, x
∗)

≤ d(xn, x
∗) (4)

d(yn, x
∗) = d(W (zn, T zn, βn), x

∗)

≤ (1− βn)d(zn, x
∗) + βnd(Tzn, x

∗)

≤ (1− βn)d(zn, x
∗) + βn[ad(zn, x

∗) + bd(zn, x
∗)]

= (1− βn + aβn + bβn)d(zn, x
∗)

≤ d(zn, x
∗)

From equation (4) , we have

d(yn, x
∗) ≤ d(xn, x

∗) (5)

d(xn+1, x
∗) = d(W (Txn, T yn, αn), x

∗)

≤ (1− αn)d(Txn, x
∗) + αnd(Tyn, x

∗)

≤ (1− αn)[ad(xn, x
∗) + bd(xn, x

∗)] + αn[ad(yn, x
∗) + bd(yn, x

∗)]

= (1− αn)(a+ b)d(xn, x
∗) + αn(a+ b)d(yn, x

∗)

From equation (5), we have

d(xn+1, x
∗) ≤ (a+ b)d(xn, x

∗)

≤ d(xn, x
∗) (6)
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It follows that d(xn, x
∗) is non-increasing and bounded. Hence limn→∞ d(xn, x

∗)
exist □

Lemma 3.1.2. Let C be a nonempty closed and convex subset of a complete uni-
formly convex hyperbolic space with monotone modulus of uniform convexity η. Let
T : C → C be a mean nonexpansive mappings with F (T ) ̸= ϕ and the sequence{xn}
is defined by (3). Then {xn} is bounded and limn→∞ d(xn, Txn) = 0.

Proof. From Lemma 3.1.1, we have that limn→∞ d(xn, x
∗) exists for each x∗ ∈

F (T ). Suppose that

lim
n→∞

d(xn, x
∗) = c.

Case I: If c = 0, then we are done.
Case II: If c > 0. From equations (4) and (5) in Lemma 3.1.1, we have

lim sup
n→∞

d(zn, x
∗) ≤ c (7)

lim sup
n→∞

d(yn, x
∗) ≤ c (8)

Since T is mean nonexpansive mapping, it follows that

d(Txn, x
∗) ≤ ad(xn, x

∗) + bd(xn, x
∗)

= (a+ b)d(xn, x
∗)

≤ d(xn, x
∗) (9)

and

d(Tyn, x
∗) ≤ d(yn, x

∗). (10)

Taking lim sup of both sides, we have

lim sup
n→∞

d(Txn, x
∗) ≤ c (11)

lim sup
n→∞

d(Tyn, x
∗) ≤ c. (12)

Since

c = lim
n→∞

d(xn+1, x
∗)

= lim
n→∞

d(W (Txn, Tyn, αn), x
∗)

≤ lim
n→∞

(1− αn)d(Txn, x
∗) + αnd(Tyn, x

∗). (13)

By Lemma 2.0.3 and equation (13), we obtain

lim
n→∞

d(Txn, T yn) = 0. (14)

Now

d(xn+1, x
∗) = d(W (Txn, Tyn, αn), x

∗)

≤ (1− αn)d(Txn, x
∗) + αnd(Tyn, x

∗)

= d(Txn, x
∗) + αnd(Txn, T yn) (15)

From equation (14) and (15), we have

c ≤ lim inf
n→∞

d(Txn, x
∗) (16)
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From equations (11) and (16), we get

lim
n→∞

d(Txn, x
∗) = c. (17)

On the other hand, we have

d(Txn, x
∗) ≤ d(Txn, Tyn) + d(Tyn, x

∗)

≤ d(Txn, Tyn) + d(yn, x
∗)

We obtain

c ≤ lim inf
n→∞

d(yn, x
∗) (18)

From equations (12) and (18), we have

c = lim
n→∞

d(yn, x
∗).

Since T is mean nonexapnsive mapping, we have

d(Tzn, x
∗) ≤ ad(zn, x

∗) + bd(zn, x
∗)

= (a+ b)d(zn, x
∗)

≤ d(zn, x
∗)

Taking lim sup of both sides, we have

lim sup
n→∞

d(Tzn, x
∗) ≤ c (19)

From equation (7), (19) and Lemma 2.0.3, we get

lim
n→∞

d(zn, T zn) = 0. (20)

Since

d(yn, x
∗) = d(W (zn, T zn, βn), x

∗)

≤ (1− βn)d(zn, x
∗) + βn(Tzn, x

∗)

= d(zn, x
∗) + βnd(Tzn, zn)

yields

c ≤ lim inf
n→∞

d(zn, x
∗) (21)

From equations (7) and (21), we get

c = lim
n→∞

d(zn, x
∗)

= lim
n→∞

d(W (xn, Txn, γn), x
∗).

From Lemma 2.0.3, we get

d(xn, Txn) = 0.

□

Theorem 3.1.1. Let C be a nonempty closed and convex subset of a complete
uniformly convex hyperbolic space with monotone modulus of uniform convexity η.
Let T : C → C be a mean nonexpansive mappings s.t. b < 1. Suppose F (T ) ̸= ϕ
and the sequence{xn} is defined by (3) then {xn} ∆-convergence to a fixed point of
T .



8 OMPRAKASH SAHU AND AMITABH BANERJEE EJMAA-2024/12(2)

Proof. From Lemma 3.1.2 {xn} is a bounded sequence. Thus {xn} has a ∆-
convergent subsequences. Now we have to show that every ∆-convergent sub-
sequences of {xn} has a unique ∆-limits in F (T ). Let w and z be ∆-limits of
subsequences {wn} and {zn} of {xn} respectively. From Lemma 2.0.1, we have
A(C, {wn}) = {w} andA(C, {zn}) = {z}. By Lemma 3.1.2, we get limn→∞ d(wn, Twn) =
0 and limn→∞ d(zn, T zn) = 0. By Theorem 2.1.2, gives that w, z ∈ F (T ). Now we
have to show that w = z. Suppose w ̸= z and so by the uniqueness of an asymptotic
center we have

lim sup
n→∞

d(xn, w) = lim sup
n→∞

d(wn, w)

≤ lim sup
n→∞

d(wn, z)

= lim sup
n→∞

d(xn, z)

= lim sup
n→∞

d(zn, z)

≤ lim sup
n→∞

d((zn, w)

= lim sup
n→∞

d((xn, w)

Which is contradiction. Thus w = z then {xn} ∆- convergence to a fixed point of
T . □

Theorem 3.1.2. Let C be a nonempty closed and convex subset of a complete
uniformly convex hyperbolic space with monotone modulus of uniform convexity η.
Let T : C → C be a mean nonexpansive mappings s.t.b < 1. Suppose F (T ) ̸= ϕ and
the sequence{xn} is defined by (3) then {xn} converges strongly to a fixed point of
T iff lim infn→∞ d(xn, F (T )) = 0, where d(xn, F (T )) = inf{d(xn, x

∗) : x∗ ∈ F (T )}.

Proof. Suppose that the sequence {xn} converges strongly to x∗ ∈ F (T ). Then
limn→∞ d(xn, x

∗) = 0 and since 0 ≤ d(xn, F (T )) ≤ d(xn, F (T )). It follows that
limn→∞ d(xn, F (T )) = 0. Therefore lim infn→∞ d(xn, F (T )) = 0.
Conversely: Suppose that lim infn→∞ d(xn, F (T )) = 0. Then from Lemma 3.1.1,
we obtain limn→∞ d(xn, F (T )) exists.Therefore limn→∞ d(xn, F (T )) = 0. Next
we have to show that {xn} is Cauchy sequence in C. Let for each ϵ > 0. Since
limn→∞ d(xn, F (T )) = 0, for any given ϵ > 0, there is n0 ∈ N s.t.

d(xn, F (T )) <
ϵ

2
,∀n ≥ n0

In particular, inf{d(xn0 , x
∗);x∗ ∈ F (T )} < ϵ

2 . Then there exist x∗
1 ∈ F (T ) s.t.

d(xn0
, x∗

1) <
ϵ
2 . For any m,n ≥ n0, we get

d(xn+m, xn) ≤ d(xn+m, x∗
1) + d(x∗

1, xn)

≤ d(xn0 , x
∗
1) + d(x∗

1, xn0)

≤ ϵ

2
+

ϵ

2
= ϵ.

This shows that {xn} is a Cauchy sequence in C. Since C is a closed subset of a
complete hyperbolic spaceX, C is complete. Then {xn}must converge to a point in
C i.e. limn→∞ xn = x∗. By Theorem 2.1.1, F (T ) is closed, limn→∞ d(xn, F (T )) = 0
gives limn→∞ d(x∗, F (T )) = 0 i.e. x∗ ∈ F (T ). □



EJMAA-2024/12(2)THAKUR ITERATION SCHEME FOR MEAN NONEXPANSIVE MAPPINGS9

3.2. Numerical example. In this subsection, we construct the following example
of a mean nonexpansive mapping which is not nonexpansive mapping.

Example 3.1. Let X = R with the usual metric and C = [0, 1]. Define a mapping
T : C → C by

Tx =

{
x
9 , x ∈ [0, 1

2 )
x
10 , x ∈ [ 12 , 1]

Clearly x = 0 is the fixed point of T . Then the following;

(1) Because T is not continuous at the point x = 1
2 , T is not a nonexpansive

mapping.
(2) Now we prove that T is mean nonexpansive mapping. For this purpose, let

a = 1
7 , b = 2

7 and consider the following cases;

Case I: If x, y ∈ [0, 1
2 ), By definition of T ,

|Tx− Ty| = |x
9
− y

9
|

=
1

8
|8x
9

− 8y

9
|

=
1

8
|x− y

9
+

y

9
− x

9
− (y − x+ x− y

9
)|

≤ 1

8
|x− y|+ 1

4
|x− Ty|+ 1

8
|Tx− Ty|

This Implies that |Tx− Ty| ≤ 1
7 |x− y|+ 2

7 |x− Ty|.
Case II : If x ∈ [0, 1

2 ) and y ∈ [ 12 , 1], By definition of T ,

|Tx− Ty| = |x
9
− y

10
|

= |x
9
− Tx

9
+

Tx

9
− Ty

9
+

Ty

9
− y

10
|

≤ 1

9
|x− Tx|+ 1

9
|Tx− Ty|+ 1

9
|y − Ty|

≤ 1

9
|x− y|+ 2

9
|x− Ty|+ 2

9
|Tx− Ty|

This Implies that |Tx− Ty| ≤ 1
7 |x− y|+ 2

9 |x− Ty|.
Case III: If x ∈ [ 12 , 1] and y ∈ [0, 1

2 ), The proof is the same as in Case II.

Case IV: If x, y ∈ [ 12 , 1], The proof is the same as in Case I.

Hence, T is mean nonexpansive by taking a = 1
7 ,b =

2
7 .

In what follows, we numerically compare the Thakur iteration process with other
iteration processes like Abbas, Agarwal, Noor, Ishikawa and Mann. We take αn =
0.85, βn = 0.65, γn = 0.45 and initial value x0 = 0.4.The comparison table 1 shows
that the Thakur[24] iteration converges to x∗ = 0 faster than Abbas [1], Agarwal[2],
Noor[19], Ishikawa[12] and Mann [18]. The convergence behavior of these iteration
processes are represented in Figure 1
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Iteration Thakur Abbas Agarwal Noor Ishikawa Mann
0 0.40000000 0.40000000 0.40000000 0.40000000 0.40000000 0.40000000
1 0.01623704 0.02321481 0.02261728 0.06310617 0.07595062 0.09777778
2 0.00065910 0.00134732 0.00127885 0.00995597 0.01442124 0.02390123
3 0.00002675 0.00007819 0.00007231 0.00157071 0.00273826 0.00584252
4 0.00000109 0.00000454 0.00000409 0.00024780 0.00051993 0.00142817
5 0.00000004 0.00000026 0.00000023 0.00003909 0.00009872 0.00034911
6 0.00000000 0.00000002 0.00000001 0.00000617 0.00001875 0.00008534
7 0.00000000 0.00000000 0.00000000 0.00000097 0.00000356 0.00002086
8 0.00000000 0.00000000 0.00000000 0.00000015 0.00000068 0.00000510
9 0.00000000 0.00000000 0.00000000 0.00000002 0.00000013 0.00000125
10 0.00000000 0.00000000 0.00000000 0.00000000 0.00000002 0.00000030

Table 1. Comparison of the rate of convergence with different
iteration processes.
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Figure 1. Graphical representation of convergence of iterative method
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