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WEIGHTED SHARING OF ENTIRE FUNCTIONS CONCERNING

LINEAR q - DIFFERENCE OPERATORS

HARINA P. WAGHAMORE, MEGHA M. MANAKAME

Abstract. In this research article, we investigates the value distribution of
linear q-dierence operators Lk(f,∆q,c) and Lk(g,∆q,c), for a transcenden-

tal entire functions of zero order. At the same time we also investigate the
uniqueness problems when two linear q - dierence operators of entire functions
share one value with nite weight. Our results extends the previous theorems

of existing studies [11], [12].

1. Introduction, Definitions and Main Results

In this paper, we assume that the reader is familiar with the fundamental results
[6],[14],[15]. We adopt the standard notations of the Nevanlinna theory of meromor-

phic function m(r, f), N(r, f), N(r, 0; f) and T (r, f) denote the proximity function, the
counting function, the reduced counting function and the characteristic function of f(z),
respectively.

Let f and g be two non-constant meromorphic functions dened in the complex plane
and S(r, f) denote any quantity satisfying S(r, f) = o(T (r, f)) as r → ∞ possibly excep-
tional set of nite linear measure. A meromorphic function α(̸≡ 0,∞) is called a small
function with respect to f , if T (r,α) = S(r, f). If for some a ∈ C ∪ ∞, the zeros of
f − a and g − a coincide in locations and multiplicity, we say that f and g share the
value a CM(Counting Multiplicities). On the other hand, if the zeros of f − a and g − a
coincide only in their locations, then we say that f and g share the value a IM(Ignoring
Multiplicities).

Let P (z) = anz
n+an−1z

n−1+...+a0 be a polynomial (̸= 0), where an(̸= 0), an−1, ..., a0

are complex non-variables. Denote Γ1,Γ2 by Γ1 = m1 +m2, Γ2 = m1 +2m2 respectively,
where m1 is the number of rst order zeros of P (z), likewise m2 gives number of higher
order zeros of P (z).
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Denition 1.1. [7],[8] Let k be non-negative integer or innity. For a ∈ C ∪ ∞ we
denote by Ek(a, f) the set of all a-points of f where an a-points of multiplicity m is counted
m times if m ≤ k and k+1 times if m > k. If Ek(a, f) = Ek(a, g), we say that f , g share
the value a with weight k.

Denition 1.2. [9] Let p be a positive integer and a ∈ C ∪ ∞.
(1) N(r, a; f  ≥ p), N(r, a; f  ≥ p) denotes the counting function(reduced counting

function) of those a-points of f whose multiplicities are not less than p.

(2) N(r, a; f  ≤ p). N(r, a; f  ≤ p) denotes the counting function(reduced counting
function) of those a-points of f whose multiplicities are not greater than p.

Denition 1.3. [1] Let f and g be two non-constant meromorphic functions such that f
and g share the value a IM. Let z0 be a a-point of f with multiplicity p, a a-point of g
with multiplicity q. We denote by NL(r, a; f) the counting function of those a-points of

f and g where p > q, by N
1)
E (r, a; f) the counting function of those a-points of f and g

where p = q = 1 and N
(2
E (r, a; f) the counting function of those a-points of f and g where

p = q ≥ 2, each point in these counting functions is counted only once. Similarly, one can

dene NL(r, a; g), N
1)
E (r, a; g), N

(2
E (r, a; g).

Denition 1.4. [5] For a meromorphic function f and c, (q ̸= 0) ∈ C, let us now denote
its q- shift Eq,cf and q-dierence operators ∆q,cf respectively by Eq,cf(z) = f(qz+ c) and
∆q,cf(z) = f(qz + c)− f(z), ∆k

q,cf(z) = ∆k−1
q,c (∆q,cf(z)), for all k ∈ N− 1.

Denition 1.5. [5] Let us dene linear q-shift and q-dierence operators, denoted by
Lk(f,Eq,c) and Lk(f,∆q,c) as follows,

Lk(f,Eq,c) = akf(qkz + ck) + ak−1f(qk−1z + ck−1) + ...+ a0f(q0z + c0)

and

Lk(f,∆q,c) = ak∆qk,ckf(z) + ak−1∆qk−1,ck−1f(z) + ...+ a0∆q0,c0f(z),

where a0, a1, ..., ak ; q0, q1, ..., qk ; c0, c1, ..., ck are complex constants. From the above
denition we can easily observe that

Lk(f,∆q,c) = Lk(f,Eq,c)−
k

j=0

ajf(z).

If we choose qj = qj , cj = c and aj = (−1)k−j

k
j


for 0 ≤ j ≤ k, then Lk(f,∆q,c) reduces

∆k
q,c(f(z).

Many research works on entire and meromorphic functions whose dierential polyno-
mials share certain value or xed point have been done by many mathematicians world
wide. Recently, there has been an increasing interest in studying dierence equations, the
dierence product and the q-dierence in the complex plane C, a number of papers have
focused on the uniqueness of dierence analouge of Nevanlinna Theory. The dierence
logarithmic derivative lemma, given by R. G. Halburd and R. J. Korhonen [4], in 2006
plays an important role in considering the dierence analogues of Nevanlinna Theory. Bar-
nett , Halburd, Korhonen and Morgan [3] also established an analogue of the logarithmic
derivative lemma on q-dierence operators.

In 2010, Zhang and Korhonen [16] studied the value distribution of q-dierence poly-
nomials of meromorphic functions and obtained the following result.

Theorem A. [16] Let f be a transcendental meromorphic(resp. entire) function of zero
order and q non-zero complex constant. Then for n ≥ 6(resp n ≥ 2), fnf(qz) assumes
every non-zero value a ∈ C innitely often.

In 2015, Xu, Liu and Cao [12] investigated value distributions for a q - shift of mero-
morphic functions and obtained the following results.
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Theorem B. [12] Let f be a zero-order transcendental meromorphic (resp.entire) func-
tion, q ∈ C\0, η ∈ C are complex constants. Then for n > m + 4 (resp. n > m) ,
P (f)f(qz + η) = α(z) has innitely many solutions, where α(z) ∈ S(f)\0 and S(f) de-
notes the family of all meromorphic functions α such that T (r,α) = S(r, f), where r → ∞
outside a possible exceptional set of the nite logarithmic measure.

Theorem C. [12] Let f be a zero-order transcendental meromorphic (resp.entire) func-
tion, q(̸= 0), η are complex constants. Then for n > m + 6 (resp. n > m + 2),
P (f)f(qz + η) − f(z) = α(z) has innitely many solutions, where α(z) ∈ S(f)\0
and S(f) denotes the family of all meromorphic functions α such that T (r,α) = S(r, f),
where r → ∞ outside a possible exceptional set of the nite logarithmic measure.

Theorem D. [12] Let f and g be two transcendental entire functions of zero order, and
let q ∈ C\0, η ∈ C. If P (f)f(qz+ η) and P (g)g(qz+ η) share 1 CM and n > 2Γ2 +1 be
an integer, then one of the following results holds:

(1) f ≡ tg for a constant t such that td = 1 and d =gcd(λ0,λ1,λ2, ...λn);
(2) f and g satisfy the algebraic equation R(f, g) = 0, where R(w1, w2) = P (w1)w1(qz+

η)− P (w2)w2(qz + η);
(3) fg ≡ µ where µ is a complex constant satisfying a2

nµ
n+1 ≡ 1.

In 2020, Waghamore and S. Anand [11] investigated the value distribution of linear
dierence polynomial in the form (P (ϕ)L(ϕ)),(P (ψ)L(ψ)) two dierence products of entire
functions share one value with nite weight and obtained the following results.

Theorem E. [11] Consider a zero order transcendental meromorphic functions(resp. en-
tire) (P (ϕ)L(ϕ)) and (P (ψ)L(ψ)) and A(z) ∈ S(ϕ)\0. Let qj ∈ C\0(j = 1, 2..., s), bj
and cj ∈ C be constants such that L(ϕ) =

s
j=1 bjϕ(qjz+ cj) ̸≡ 0. Suppose n and k ∈ Z+.

Again for n > Γ1 + km2 + 2s + 1(resp. n > Γ1 + km2) , (P (ϕ)L(ϕ))(k) − α(z) = 0 has
solutions which are innite in number.

Theorem F. [11] Let qj ∈ C\0 (j = 1, 2...s), bj and cj ∈ C. Consider a zero or-
der transcendental meromorphic functions(resp. entire) (P (ϕ)L(ϕ)) and (P (ψ)L(ψ)), if

El(1;P (ϕ)L(ϕ))(k) = El(1;P (ψ)L(ψ))(k) and l,m,n and s are selected as integers with one
of the subsequent options:

(1) l ≥ 2, n > 2Γ2 + 2km2 + s;
(2) l = 1, n > 1

2
(Γ1 + 4Γ2 + 5km2 + 3s);

(3) l = 0, n > 3Γ1 + 2Γ2 + 5km2 + 4s,

then one of the following results hold:
(i) ϕ = tψ such that td = 1 and t is constant and d =gcd(λ0,λ1,λ2, ..., n);
(ii) ϕ and ψ satisfy R(ϕ,ψ) = 0, where R(x1, x2) = P (x1)L(x1)− P (x2)L(x2);
(iii) ϕψ ≡ µ, where complex constant µ satises a2

nb
2µn+1 = 1.

In this paper, we study distribution of values in a more general form of linear q−
dierence operator Lk(f,∆q,c) as dened in Denition 1.5, and we obtain Theorems 1.1,
1.2 which extends the existing results of Theorem C respectively.

Theorem 1.1. Let f(z) be a transcendental entire function of zero order and α(z)(̸≡ 0)
be a small function with respect to f . Suppose that c is a non-zero complex constant, n and
p are positive integers. Then for n > Γ1 + pm2 + 2k + 3, (P (f)Lk(f,∆q,c))

(p) − α(z) = 0
has innitely many solutions.

Theorem 1.2. Let f and g be two transcendental entire functions of zero order, and let
q ∈ C\0, c ∈ C. If El(1; (P (f)Lk(f,∆q,c))

(p)) = El(1; (P (g)Lk(g,∆q,c))
(p)) and l,m, n

are integers satisfying one of the following conditions:
(i) l ≥ 2, n > 2Γ2 + 2pm2 + 3k + 5;
(ii) l = 1, n > 1

2
[Γ1 + 4Γ2 + 5pm2 + 7k + 12];
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(iii) l = 0, n > 3Γ1 + 2Γ2 + 5pm2 + 6k + 11.

Then either (P (f)Lk(f,∆q,c))
(p).(P (g)Lk(g,∆q,c))

(p) ≡ a2 or one of the following results
holds:

(1) f ≡ tg for a constant t such that td = 1 and d =gcd(λ0,λ1,λ2, ...,λn);
(2) f and g satisfy algebraic equation R(f, g) = 0 where R(w1, w2) = P (w1)Lk(w1,∆q,c)−

P (w2)Lk(w2,∆q,c).

Remark 1. The zero order growth restriction in Theorem 1.1 cannot be extended to nite
order. By taking P (z) = zn, f(z) = ez, c = 0 and q = −n. Then P (f(z))[f(qz)− f(z)]− 1
have no zeros.

2. Preliminary Lemmas

In this section, we state some Lemmas which will play key roles in proving the main
results of the paper.

H =
F ′′

F ′ − 2F ′

F − 1


−

G′′

G′ − 2G′

G− 1


.

where F and G are non-constant meromorphic functions dened in the complex plane C.

Lemma 2.1. [14] Let f be a non-constant meromorphic function and P (f) = anf
n +

an−1f
n−1 + ...+ a0, where an(̸= 0), an−1, ..., a0 are complex constants. Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.2. [12] Let f be a non-constant meromorphic function of zero order and q and
c two non-zero complex constants. Then

T (r, f(qz + c)) = T (r, f) + S(r, f),

N(r,∞; f(qz + c)) ≤ N(r,∞; f(z)) + S(r, f); N(r, 0; f(qz + c)) ≤ N(r, 0; f) + S(r, f),

N(r,∞; f(qz + c)) ≤ N(r,∞; f) + S(r, f); N(r, 0; f(qz + c)) ≤ N(r, 0; f) + S(r, f).

Lemma 2.3. [17] Let f be a non-constant meromorphic function, and p, k be two positive
integers. Then

Np


r, 0; f (k)


≤ T (r, f (k))− T (r, f) +Np+k(r, 0; f) + S(r, f), (1)

Np


r, 0; f (k)


≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (2)

Lemma 2.4. [10] Let f be a zero-order meromorphic function, and q(̸= 0), c ∈ C. Then

m


r,

f(qz + c)

f(z)


= S(r, f).

Lemma 2.5. [5] Let f be a non-constant meromorphic function of zero order, then
S(r, Lk(f,∆q,c)) can be replaced by S(r,f).

In view of Lemma 2.2, we get
T (r, Lk(f,∆q,c)) ≤

k
j=0 T (r, f(qjz)) + T (r, f(z)) + S(r, f) ≤ (k + 2)T (r, f) + S(r, f).

Lemma 2.6. [7] Let f and g be two non-constant meromorphic functions. If E2(1; f) =
E2(1; g) then one of the following cases holds:
(i) T (r) ≤ N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r),
(ii) f = g,
(iii) fg = 1,
where T (r) = maxT (r, f), T (r, g) and S(r) = oT (r).
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Lemma 2.7. [2] Let F and G be two non-constant meromorphic functions. If
E1(1;F ) = E1(1;G) and H ̸≡ 0 then

T (r, F ) ≤ N2(r, 0;F )+N2(r, 0;G)+N2(r,∞;F )+N2(r,∞;G)+ 1
2
N(r, 0;F )+ 1

2
N(r,∞;F )+

S(r, F ) + S(r,G);
the same inequality holds for T (r,G).

Lemma 2.8. [2] Let F and G be two non-constant meromorphic functions sharing 1 IM
and H ̸≡ 0 then
T (r, F ) ≤ N2(r, 0;F )+N2(r, 0;G)+N2(r,∞;F )+N2(r,∞;G)+2N(r, 0;F )+N(r, 0;G)+

2N(r,∞;F ) +N(r,∞;G) + S(r, F ) + S(r,G);
the same inequality holds for T (r,G).

Lemma 2.9. Let f(z) be a transcendental meromorphic function of zero order and P (f) =
anf

n+an−1f
n−1+ ...+a0, Let F1 = P (f)Lk(f,∆q,c), where n is a positive integer. Then

(n− k − 1)T (r, f) + S(r, f) ≤ T (r, F1).
Proof. From First Fundamental Theorem, Lemmas 2.1 and 2.4, we obtain

(n+ 1)T (r, f) = T (r, f(z)P (f(z)) + S(r, f)

≤ T


r,

f(z).F1

Lk(f,∆q,c)


+ S(r, f)

≤ T (r, F1) + T


r,

Lk(f,∆q,c)

f(z)


+ S(r, f)

≤ T (r, F1) + T


r,

k
j=0 ajf(qjz + cj)−

k
j=0 ajf(z)

f(z)


+ S(r, f)

≤ T (r, F1) +

k

j=0

T


r,

ajf(qjz + cj)

f(z)


+ S(r, f)

≤ T (r, F1) +
k

j=0

m


r,

ajf(qjz + cj)

f(z)


+

k

j=0

N


r,

ajf(qjz + cj)

f(z)


+ S(r, f)

(n+ 1)T (r, f) ≤ T (r, F1) + (k + 2)T (r, f) + S(r, f).

Thus (n− k − 1)T (r, f) + S(r, f) ≤ T (r, F1)
This completes the proof of lemma 2.9.

Lemma 2.10. Let f and g be two entire functions, n,k be two positive integers, q ̸= 0, c
complex constants and let

F = (P (f)Lk(f,∆q,c))
(p), G = (P (g)Lk(g,∆q,c))

(p)

If there exists two non-zero constants c1 and c2 such that N(r, c1;F ) = N(r, 0;G) and

N(r, c2;G) = N(r, 0;F ) then n ≤ 2Γ1 + 2pm2 + 3k + 5.
Proof. We put F1 = (P (f)Lk(f,∆q,c)) and G1 = (P (g)Lk(g,∆q,c)), by the Second funda-
mental theorem of Nevanlinna we have

T (r, F ) ≤ N(r, 0;F ) +N(r, c1;F ) + S(r, F )

≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ). (3)

Using equations (1), (2) and (3), Lemmas 2.1, 2.2 and 2.9 we get

(n− k − 1)T (r, f) ≤ T (r, F )−N(r, 0;F ) +Np+1(r, 0;F1) + S(r, f)

≤ N(r, 0;G) +Np+1(r, 0;F1) + S(r, f)

≤ Np+1(r, 0;F1) +Np+1(r, 0;G1) + S(r, f) + S(r, g)

≤ [m1 + (p+ 1)m2 + k + 2][T (r, f) + T (r, g)] + S(r, f) + S(r, g) (4)
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Similarly,

(n− k − 1)T (r, g) ≤ [m1 + (p+ 1)m2 + k + 2][T (r, f) + T (r, g)] + S(r, f) + S(r, g) (5)

In view of (4) and (5) we have
[n− 2m1 − 2m2 − 2pm2 − 3k − 5][T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g)
which gives n ≤ 2Γ1 + 2pm2 + 3k + 5.
This completes the proof of lemma 2.10.

3. Proof of the Theorems

Proof of Theorem 1.1. Let F1 = P (f)Lk(f,∆q,c). Then F1 is a transcendental entire

function. If possible, we may assume that F
(p)
1 −α(z) has only nitely many zeros. Then

we have

N(r,α;F
(p)
1 ) = Ologr = S(r, f). (6)

Using (1), (6) and Nevanlinna’s theorem for three small functions we deduce

T (r, F
(p)
1 ) ≤ N(r, 0;F

(p)
1 ) +N(r,α;F

(p)
1 ) + S(r, f)

≤ T (r, F
(p)
1 )− T (r, F1) +Np+1(r, 0;F1) + S(r, f). (7)

By Lemma 2.9 we obtain from (7)

(n− k − 1)T (r, f) ≤ Np+1(r, 0;F1) + S(r, f)

≤ Np+1(r, 0;P (f)) +N(r, 0;Lk(f,∆)) + S(r, f)

≤ (m1 + (p+ 1)m2 + k + 2)T (r, f) + S(r, f).

This gives
(n− k − 1−m1 − pm2 −m2 − k − 2)T (r, f) ≤ S(r, f),
a contradiction to the assumption that n > Γ1 + pm2 + 2k + 3.
This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Let F1 = P (f)Lk(f,∆q,c), G1 = P (g)Lk(g,∆q,c), F = F
(p)
1

and G = G
(p)
1 . Then F and G are transcendental entire functions satisfying El(1;F ) =

El(1;G). Using (1) and Lemma 2.9 we get

N2(r, 0;F ) ≤ N2(r, 0; (F1)
(p)) + S(r, f)

≤ T (r, (F1)
(p))− T (r, F1) +Np+2(r, 0;F1) + S(r, f)

≤ T (r, F )− (n− k − 1)T (r, f) +Np+2(r, 0;F1) + S(r, f).

From this we get

(n− k − 1)T (r, f) ≤ T (r, F )−N2(r, 0;F ) +Np+2(r, 0;F1) + S(r, f). (8)

Again from (2) we have

N2(r, 0;F ) ≤ N2(r, 0; (F
(p)
1 ) + S(r, f) ≤ Np+2(r, 0;F1) + S(r, f). (9)

We now discuss the following three cases sepeartely.

Case 1. Let l ≥ 2. Suppose, if possible , that (i) of Lemma 2.6 holds. Then using
(9) we obtain (8)

(n− k − 1)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +Np+2(r, 0;F1)

+ S(r, f) + S(r, g)

≤ Np+2(r, 0;F1) +Np+2(r, 0;G1) + S(r, f) + S(r, g)

(n− k − 1)T (r, f) ≤ (m1 + (p+ 2)m2 + k + 2)[T (r, f) + T (r, g)] + S(r, f) + S(r, g) (10)
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Similarly,

(n− k − 1)T (r, g) ≤ (m1 + (p+ 2)m2 + k + 2)[T (r, f) + T (r, g)] + S(r, f) + S(r, g) (11)

Combining (10) and (11) we obtain

(n− k − 1− 2m1 − 2pm2 − 4m2 − 2k − 4)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

contradicting the fact that n > 2Γ2 + 2pm2 + 3k+ 5. Therefore , by Lemma 2.6, we have
either FG = 1 or F = G. We assume that F = G then

(P (f)Lk(f,∆q,c))
(p) = (P (g)Lk(g,∆q,c))

(p)

Integrating once we obtain

(P (f)Lk(f,∆q,c))
(p−1) = (P (g)Lk(g,∆q,c))

(p−1) + ck−1,

where ck−1 is a constant. If ck−1 ̸= 0, from Lemma 2.10, it follows that n ≤ 2Γ1 + 2(p−
1)m2 +3k+5, contrary to the fact that n > 2Γ2 +2pm2 +3k+5 and Γ2 ≥ Γ1. Hence we
must have ck−1 = 0. Repeating the process k-times we deduce that

(P (f)Lk(f,∆q,c) = (P (g)Lk(g,∆q,c) (12)

i.e [anf
n+an−1f

n−1+...+a1f+a0]ak[(f(qkz+ck)−f(z)]+ak−1[f(qk−1z+ck−1−f(z)]+
... + a1[f(q1z + c1) − f(z)] + a0[f(q0z + c0) − f(z)] = [ang

n + an−1g
n−1 + ... + a1g +

a0]ak[(g(qkz + ck)− g(z)] + ak−1[g(qk−1z + ck−1)− g(z)] + ...+ a1[g(q1z + c1)− g(z)] +
a0[g(q0z + c0)− g(z)]

Set h = f
g
, we consider the following two subcases.

Subcase 1.1. Suppose h is non-constant then using (12), f and g will be a solution of the
algebraic equation R(f, g) = 0, with R(w1, w2) = P (w1)Lk(w1,∆q,c)−P (w2)Lk(w2,∆q,c).

Subcase 1.2. If h is constant, then substituting f = gh in (12), we get

[ang
nhn + an−1g

n−1hn−1 + ... + a1gh + a0]akh[(g(qkz + ck) − g(z)] + ak−1h[g(qk−1z +
ck−1 − g(z)] + ...+ a1h[g(q1z + c1)− g(z)] + a0h[g(q0z + c0)− g(z)] =
[ang

n +an−1g
n−1 + ...+a1g+a0]ak[(g(qkz+ ck)− g(z)]+ak−1[g(qk−1z+ ck−1)− g(z)]+

...+ a1[g(q1z + c1)− g(z)] + a0[g(q0z + c0)− g(z)]

which implies,

angn[Lk(g,∆q,c)](h
n+1 − 1) + an−1g

n−1[Lk(g,∆q,c)](h
n − 1) + ...+

a1g[Lk(g,∆q,c)](h
2 − 1) + a0[Lk(g,∆q,c)](h− 1) = 0 (13)

If an ̸= 0, an−1 = an−2 = ... = a0 = 0, then we get hn+1 = 1.
Let an ̸= 0 and suppose there is some ai ̸= 0(i ∈ 0, 1, ..., n− 1). Let hn+1 ̸= 1 from (13),
we have T (r, g) = S(r, g) which contadicts the transcendental function g. So hn+1 = 1.
Likewise, we have hj+1 = 1 provided aj ̸= 0(j = 0, 1, 2...n), which implies f = tg where t
is a constant such that td = 1.
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Case 2. Let l = 1 and H ̸≡ 0. Using Lemma 2.7 and (9), we obtain from (8)

(n− k − 1)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +
1

2
N(r, 0;F )

+
1

2
N(r,∞;F ) +Np+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Np+2(r, 0;F1) +Np+2(r, 0;G1) +
1

2
Np+1(r, 0;F1) + S(r, f) + S(r, g)

≤ [m1 + (p+ 2)m2 + k + 2]T (r, f) +
1

2
[m1 + (p+ 1)m2 + k + 2]T (r, f)

+ [m1 + (p+ 2)m2 + k + 2]T (r, g)

≤ 1

2
[5m1 + (5p+ 9)m2 + 5k + 10]T (r) + S(r), (14)

where T (r) and S(r) are same as in Lemma 2.6. Similarly, we obtain

(n− k − 1)T (r, g) ≤ 1

2
[5m1 + (5p+ 9)m2 + 5k + 10]T (r) + S(r) (15)

From the above inequalities (14) and (15) we have

n− 5m1 + (5p+ 9)m2 + 7k + 12

2


T (r) ≤ S(r),

contradicting the fact that n > 1
2
[Γ1 + 4Γ2 + 5pm2 + 7k + 12].

We now assume that H ≡ 0. Then
F ′′

F ′ − 2F ′

F − 1


−

G′′

G′ − 2G′

G− 1


= 0.

Integrating both sides of the above equality twice we get,

1

F − 1
=

A

G− 1
+B, (16)

where A(̸= 0) and B are constants. From (16) it is obvious that F,G share the value 1
CM and so they share (1, 2). Hence we have n > 2Γ2 + 2pm2 + 3k + 5.
Now we discuss the following three subcases.
Subcase 2.1. Let B ̸= 0 and A = B then from (16), we get

1

F − 1
=

BG

G− 1
, (17)

If B = −1, then from (17) we obtain FG = 1 i.e

(P (f)Lk(f,∆q,c))
(p).(P (g)Lk(g,∆q,c))

(p) = a2

which is one of the conclusion of Theorem 1.2.
If B ̸= −1, from (17), we have

1

F
=


BG

(1 +B)G− 1



and so N

r, 1

1+B
;G


= N(r, 0;F ).

Now from the second fundamental theorem and Lemma 2.3, we have

T (r,G) ≤ N(r, 0;G) +N


r,

1

1 +B
;G


+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G)

≤ Np+1(r, 0;F1) + T (r,G) +Np+1(r, 0;G1)− (n− k − 1)T (r, g) + S(r, g).

This gives

(n− k − 1)T (r, g) ≤ [(m1 + (p+ 1)m2 + k + 2)]T (r, f) + T (r, g)+ S(r, g). (18)
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Similary,

(n− k − 1)T (r, f) ≤ [(m1 + (p+ 1)m2 + k + 2)]T (r, f) + T (r, g)+ S(r, f) (19)

By combining (18) and (19) we obtain

(n− k − 1− 2m1 − 2(p+ 1)m2 − 2k − 4)T (r, f) + T (r, g) ≤ S(r, f) + S(r, g), (20)

a contradiction that n > 2Γ2 + 2pm2 + 3k + 5.

Subcase 2.2. Let B ̸= 0 and A ̸= B. Then from (16) we obtain

F =


(B+1)G−(B−A+1)
BG+(A−B)


and therefore N


r, B−A+1

B+1
;G


= N(r, 0;F ). Proceeding simi-

larly as in subcase 2.1, we can get a contradiction.

Subcase 2.3. Let B = 0 and A ̸= 0. Then from (16) we get F =

G+A−1

A


and G =

AF − (A−1). If A ̸= 1, we have N

r, A−1

A
;F


=N(r, 0;G) and N(r, 1−A;G) = N(r, 0;F )

Then by Lemma 2.10, it follows that n ≤ 2Γ1 + 2pm2 + 3k + 5, a contradiction. Thus
A = 1 and then F = G. Now the result follows from proof of case 1.

Case 3. Let l = 0 and H ̸≡ 0. Using Lemma 2.8 and (9), we obtain from (8)

(n− k − 1)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2N(r, 0;F )

+N(r, 0;G) +Np+2(r, 0;F1) + 2N(r,∞;F ) +N(r,∞;G)

+ S(r, f) + S(r, g)

≤ Np+2(r, 0;F1) +Np+2(r, 0;G1) + 2Np+1(r, 0;F1) +Np+1(r, 0;G1)

+ S(r, f) + S(r, g)

≤ [3m1 + (3p+ 4)m2 + 3k + 6]T (r, f) + [2m1 + (3 + 2p)m2 + 2k + 4]T (r, g)

+ S(r, f) + S(r, g)

≤ [5m1 + (5p+ 7)m2 + 5k + 10]T (r) + S(r)

(n− k − 1)T (r, f) ≤ [5m1 + (5p+ 7)m2 + 5k + 10]T (r) + S(r). (21)

Similarly,

(n− k − 1)T (r, g) ≤ [5m1 + (5p+ 7)m2 + 5k + 10]T (r) + S(r). (22)

From (21) and (22) we obtain (n− 5m1 − (5p− 7)m2 + 6k + 11)T (r) ≤ S(r),
Contradicting the assumption that n > 3Γ1 + 2Γ2 + 5pm2 + 6k + 11.
Therefore H ≡ 0 and then proceeding in a manner, similar to case 2, the result follows.
This completes the proof of Theorem 1.2.

Applications. Value distribution of zero order meromorphic functions is a powerful tool
and their weighted value sharing is a fascinating area of research within complex analysis.
Through the analysis of various research articles, we have gained valuable insights into
the properties of these functions and their applications in mathematics, engineering and
physics. By explore the idea of q-shift dierence-dierential polynomials, and nding a
useful tool to comprehend the behaviour of meromorphic (entire) functions.

Also, we can pose the following open questions.
Open questions:
1. What happens to Theorems 1.1 and 1.2, if we replace the linear q - dierence operator
Lk(f,∆q,c) by L(z, f) where L(z, f) = b1f(qz + c) + b0f(z), b1(̸= 0) and b0 are complex
constants.
2. Can the condition for the lower bound n in Theorems 1.1 and 1.2 be reduced any
further?
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