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ABSTRACT. S. Ramanujan in his last letter to G.H. Hardy has introduced sev-
enteen mock theta functions of differenct orders ( 3,5 and 7) without explicitly
mentioning the reason for his levelling of order, later Watson added to this
set three more third order mock theta function. Watson also defined bilateral
form of some mock theta function of order five and expressed them in terms
of lerch transendetal functions . Patial mock theta functions of sixth order
were studied by Y.S. Choi and partial mock theta functions of third order
were studied by G.E. Andrews. In this paper we have given generalization
of partial sixth and third order mock theta functions and it is shown that
these generalized partial mock theta functions are Fy functions. g-integral
representation of these generalized partial mock theta functions are also given.
we have also expressed some bilateral mock theta functions in terms of lerch
transcendental functions f(z,¢;q,p).

1. INTRODUCTION:

S.Ramanujan in his last letter to G.H. Hardy[14,pp 354-355] indroduced sev-
enteen functions whom he called mock theta functions, as they were not theta
functions. He stated two conditions for a function to be a mock theta function:

(a) For every root of unity ¢, there is #- function 6¢(q) such that difference
f(q) — 0¢(¢) is bounded as ¢ — ¢ radially.

(b) There is no single 8-function which works for all ¢ i.e., for every #-function
0(q) there is some root of unity ¢ for which difference f(q) — 6(q) is unbounded as
q — ( radially.
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of the seventeen mock theta functions,four were of third order,ten of fifth order
in two groups with five functions in each group and three of seventh order. Ra-
manujan did not specify what he meant by the order of a mock theta function.Later
Watson [18] added three more third order mock theta functions,making the four
third order mock theta functions to seven.
G.E. Andrews [4] while visiting Trinity College Cambridge University discovered
some notebooks of Ramanujan , and called it the ” Lost ” Notebook. In the Note-
book Andrews found more mock theta functions and some identities and Andrews
and Hickeson [5] called them sixth order.
The partial sixth order mock theta functions of Ramanujan are:
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We give a generalization of the partial sixth order and partial third order mock
theta functions. The generalized partial sixth order mock theta functions are:
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and
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For t = 0,a = 1,we have the generalized partial functions of Choi[9].
The generalized partial third order mock theta function are:
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For f =1 and z = q the first five functions namely fo nv,¢0 ~,%0,~5,V0,N,wo,N aTe
generalized third order partial mock theta functions of Andrews[6].For ¢t = 0,8 =
1,&0 = g the generalized functions fy n,¢0,~,%0,~ and xo,n reduce to the third order
mock theta functions of Ramanujan and wo, n,v,n and po n reduces to the third
order mock theta functions of Watson[18].

In this study we will show that these generalized functions are F,-functions.
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2. NOTATION:

We use the following g-notation. Suppose ¢ and z are complex numbers and n
is an integer. If n > 0 we define
n—1
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A basic hypergeometric series ,41®, on base ¢* is defined as
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and a bilateral basic hypergeometric series ,.¥,. is defined as
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The Lerch transcendental function f(x,&;q,p) is defined by:
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3. THE GENERALIZED FUNCTIONS ARE F, - FUNCTIONS:

We show that these partial generalized functions are Fj - Function.
Theorem 1
The generalized partial sixth order mock theta functions ¢o v (¢, @, 2; ¢) %0 n (t, @, 2; @) ,po.n (t, @, 25 @),
oo~ (t, @, z; q) and the generalized partial third order mock theta functions fo v (¢, o, 8, 2; q)
BN (o, B, 239) b N (t, @, B, 2;9)vo,n (E, o, By 25.q),x0,8 (B @, 25.q) 00,8 (E, B 23.9), wo,N (E, @, B, 23 q)
are Iy -Functions.
Proof:
We shall give the proof for ¢o n (¢, o, z; ¢) only .The proofs for the other generalized
partial mock theta functions are similar,hence omitted.
Applying the difference operator Dy + to ¢o n(t, @, ;) ,we have :
t Dyt ¢o,n(t, @, 2;q) = ¢on(t, o, 2;q) - pon(tg, o, z;q)
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As stated earlier the proofs for other partial generalized functions are similar,so
omitted.

4. RELATION BETWEEN THE (GENERALIZED PARTIAL SIXTH ORDER MOCK
THETA FUNCTIONS AND GENERALIZED PARTIAL THIRD ORDER MOCK
THETA FUNCTIONS:

Theorem 2 )
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Which proves Theorem 2 (ii).

Proof of (iii)
Writing o for a in ¢ n(t, a, 3, 2;q), we have
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Which proves Theorem 2 (iii).

Proof of (iv)
Writing =* for a and then a? for a in Yo N (¢, @, B,2;q) , we have
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which proves Theorem 2(iv).

5. Q-INTEGRAL REPRESENTATION FOR THE GENERALIZED PARTIAL SIXTH
ORDER MoOCK THETA FUNCTION AND GENERALIZED PARTIAL THIRD
ORDER MOCK THETA FUNCTIONS:

The g-integral was defined by Thomas and Jackson[11,p.23] as

/0 fOdt = (1—) S Flg)g"
n=0

We now give the g-integral representation for the generalized sixth order mock theta
functions and also for generalized third order mock theta functions.
Theorem 3(a)
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We shall give the detailed proof for ¢o n(q*,a, z;q). The proof for the other
functions are similar,so omitted.
Limiting case of g-beta integral [11,p.23(1.11.7)] is
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By using (5.1),(5.2) can be written as

1—q)t (1
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which proves (i). The proofs for all other functions are similar.

Theorem 3(b):
The g-integral representation for the generalized partial third order mock theta

functions:

_ 1 1
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Proof:

The proofs are similar to given above for ¢ n (¢, @, z; q),s0 the Theorem 3(b) fol-
lows.

6. REPERSENTATION IN TERMS OF LERCH TRANSCENDENTAL FUNCTION

The bilateral mock theta functions corresponding to third order mock theta
functions were studied by S.D. Prasad [13] .we now express some of these functions
in terms of Lerch trascendental functions by means of the following lemma of M
Ahmad [3] .

Lemma 6.1 For e = +1,

& an? Bn
rn 4 q - - 2y—28-38 5—2y 2a-6 §
> (-1 ) = f"(—e) P (=P g7 q?). (7)
and
rn an? n . B 2— @
S DM =g q)ng™ ¢ = 707 q T 5%, 7). (8)

Proof. The proof follows from direct substitution and use of basic hypergeometric
transformations. O

we now express the following bilateral 3rd order mock theta functions as Lerch
trascendental functions
A mock theta function is expressed in terms of a series from 0 to co, whereas the
correponding bilateral mock theta is the same series from —oo to oco.

”L2 — .
0.c(q) = X% =hor = f(—q2,¢7;1,q) by taking o = 1,3 = 0, ¢ = —1,
v=2,6 =2,r =2 in equation (3.1)
n2
o.e(g) = Y= lom = f(i.ii1,) by taking a = 1,8 =0, e = 1, y = 1,6 = 2,7 =
2 in equation (3.1)
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71,2 n
00, ¢(q) = ﬁqztiooo (4:[1;5;—2)” = quf(—q%,q_l; 1,q) by taking a = 1,8 =1, e =
—1,7=3,5 = 2,7 =2 in equation (3.1)

Conclusions: Mock theta functions are mysterious functions.These investiga-
tions will be helpful in understanding more about these partial mock theta func-
tions.Being shown that they belong to the class of F-functions and properties are
established for the partial mock theta functions and relations between these partial
mock theta functions may also be derived.
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