

SOME REMARKS ON THE HIGHER REGULARITY OF MINIMIZERS OF ANISOTROPIC FUNCTIONALS

FRANCESCO SIEPE

Abstract

We consider the anisotropic integral functional of the calculus of variations $$
\int_{\Omega}\left[\sum_{i=1}^{n} c_{i}\left|D_{i} u\right|^{p_{i}}\right] d x
$$ where $c_{i} \geq 0$ and $2 \leq p_{i} \leq p_{i+1}$ for every $i=1, \ldots n-1$. We exhibit a minimizer of such functional, for an opportune choice of the exponents p_{i}, which turns out to be bounded everywhere and Lipschitz continuous (or even of class C^{1}) in an opportune subset of Ω.

1. Introduction

Since the second half of the eighties, many people interested to the study of the regularity properties of minimizers of functionals of the calculus of variations of the type

$$
\begin{equation*}
\mathcal{I}(u, \Omega)=\int_{\Omega} \sum_{i=1}^{n} c_{i} f_{i}\left(D_{i} u\right) d x \tag{1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{n}(n \geq 2)$, is an open bounded set, $u: \Omega \rightarrow \mathbb{R}, c_{i} \geq 0$ for $i=1, \ldots, n$ are constants and $f_{i}: \mathbb{R} \rightarrow[0,+\infty)$ are functions satisfying, for every $t \in \mathbb{R}$ the following non standard growth condition:

$$
\lambda|t|^{p_{i}} \leq f_{i}(t) \leq \Lambda|t|^{p_{i}}
$$

[^0]for every $i=1, \ldots, n$ and some positive constants $0<\lambda<\Lambda$. Moreover, some further assumption, such as a strong ellipticity condition of the kind
$$
\sum_{i=1}^{n} f_{i}^{\prime \prime}\left(\xi_{i}\right) \eta_{i} \eta_{i} \geq \nu \sum_{i=1}^{n}\left|\xi_{i}\right|^{p_{i}-2}\left|\eta_{i}\right|^{2}
$$
is assumed for every $\xi, \eta \in \mathbb{R}^{n}$ and some $\nu>0$.
Authors often refer to such a functional as the othotropic functional.
A minimizer of functional (1) is a function u which belongs to the anisotropic Sobolev space
\[

$$
\begin{equation*}
W^{1,\left(p_{i}\right)}(\Omega)=\left\{v \in W^{1,2}(\Omega): D_{i} v \in L^{p_{i}}(\Omega), \forall i=1, \ldots, n\right\} \tag{2}
\end{equation*}
$$

\]

and such that

$$
\mathcal{I}(u, \Omega) \leq \mathcal{I}(v, \Omega)
$$

for every $v \in W^{1,\left(p_{i}\right)}(\Omega)$ such that $v=u$ on $\partial \Omega$.
As it is well known, there exists minimizers of functional (1), that are not bounded, if the exponents p_{i} are too far apart (see [18], [11], [13]).
To be more precise about this point, it is opportune to introduce the harmonic mean of the exponents p_{i}, that is

$$
\bar{p}=n\left[\sum_{i=1}^{n} \frac{1}{p_{i}}\right]^{-1}
$$

and its Sobolev conjugate \bar{p}^{*} defined as

$$
\bar{p}^{*}=\frac{n \bar{p}}{n-\bar{p}} \quad \text { if } \quad \bar{p}<n
$$

while \bar{p}^{*} is any number strictly greater than \bar{p} otherwise.
In [18] and [11] for instance it is proved that, if $n \geq 6, p_{i}=2$ for every $i=$ $1, \ldots, n-1$ and $p_{n}=4$, then there exists a minimizer of functional (1) which is not bounded at some point of the unit ball in $\Omega=B_{1}(0) \subset \mathbb{R}^{n}$.
This result can be generalized obtaining that, if $p_{i}>\bar{p}^{*}$ for some i, then the minimizer u may not be bounded.
On the other hand, it has also been proved (see [3], [10], [25]) that the minimizers of functional (1) are bounded, provided

$$
\begin{equation*}
\max _{1 \leq i \leq n} p_{i} \leq \bar{p}^{*} \tag{3}
\end{equation*}
$$

A question arise at this point:
"is the bound (3) sufficient to get higher regularity (namely, Lipschitz regularity) for the minimizers of functional (1)?"

In [1], the same problem is taken into account in the vectorial case, that is for $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}(N>1)$, and a very important result is proved under assumption (3) :
"there exists an open subset Ω_{0} of Ω, such that $\left|\Omega \backslash \Omega_{0}\right|=0$ and $u \in C_{l o c}^{1, \alpha}\left(\Omega_{0}, \mathbb{R}^{N}\right)$ for some $\alpha \in(0,1)$ ".

Therefore, if condition (3) holds in the vectorial case, we have Hölder regularity of minimizers, up to a set of measure zero. In literature we often refer to this property as partial regularity of minimizers.

In the scalar case, higher regularity results have been obtained by paying the price of a stronger bound for the exponents p_{i} (see for instance [19], [22] and the references quoted there).
Moreover, in [16] and [17] it is proven that any bounded minimizer of functional (1) is Lipschitz continuous, but this proof is known to have some flaws, while in [4] the same result is obtained for any choice of the exponents $2 \leq p_{1}, \leq \cdots \leq p_{n}$.

The goal of this paper is to exhibit an example of a minimizer u of functional (1).

For the construction of the minimizer we will choose the exponents p_{1}, \ldots, p_{n} in such a way that they satisfy bound (3) as well as some further lower bound. Moreover we will make some assumption about the dependences of u from the variables x_{1}, \ldots, x_{n}, that will force us to slightly reduce the set where the minimizer itself is defined.

2. Statements and assumptions

Let $k \in \mathbb{N}$ such that $1 \leq k<n$ and consider the anisotropic functional (1) in the case of $p_{1}=p_{2}=\cdots=p_{k}=p \geq 2$ and $p_{k+1}=p_{k+2}=\cdots=p_{n}=q>p$. Moreover we assume that $c_{1}=c_{2}=\cdots=c_{k}=1$ while $c_{k+1}=c_{k+2}=\cdots=c_{n}=A>0$:

$$
\begin{equation*}
\int_{B_{1}(0)}\left[\sum_{i=1}^{k}\left|D_{i} u\right|^{p}+A \sum_{i=k+1}^{n}\left|D_{i} u\right|^{q}\right] d x \tag{4}
\end{equation*}
$$

We assume also that a minimizer of (4) assumes a prescribed value u_{0} at the boundary of the unit ball $B_{1}(0)$.
Our purpose is to determine an explicit a minimizer of functional (4) for suitable values of A, p, q, k, n.

Let $W^{p, q}$ be the space defined by (2), when $p_{i}=p$ for every $i=1, \ldots, k, p_{i}=q$ for every $i=k+1, \ldots, n$ and $\Omega=B_{1}(0)$.
As we can easily see, in this case

$$
\bar{p}=\frac{n p q}{q k+p(n-k)}
$$

Furthermore, if $p \leq k$ we have that $\bar{p}<n$ while, if $p>k$, the same condition holds according to

$$
\begin{equation*}
q<\frac{n-k}{p-k} p \tag{5}
\end{equation*}
$$

Hence, if q satisfies condition (5), we can set

$$
\bar{p}^{*}=\frac{n p q}{k(q-p)+p(n-q)}
$$

Then, from now on, we will assume that $p>k$ and (5) holds. Under such assumptions, it easily follows that $q \leq \bar{p}^{*}$. For our convenience, we will also assume that $q>n-k$.

By the regularity results stated above, it follows that condition (5) for q, ensures that the minimizers of functional (4) are bounded.
It is also remarkable that a sufficient upper bound for q to get Lipschitz regularity is

$$
\begin{equation*}
q<\frac{n+2}{n} p \tag{6}
\end{equation*}
$$

(see [19] and [22]). Although more recent results slightly improved bound (6) for Lipschitz regularity, and that in [4] Lipschitz regularity is obtained just assuming that (3) holds, for our convenience in the following we will always assume that

$$
\begin{equation*}
k<p \leq \max \left\{\frac{n+2}{n} p, \quad n-k\right\}<q<\frac{n-k}{p-k} p . \tag{7}
\end{equation*}
$$

Remark 1. The chain of inequalities (7) stands according to

$$
k<p<\frac{n-k}{p-k} p \quad \Longrightarrow \quad k<p<n
$$

and that k satisfies inequalities $k<p \leq n-k$ if and only if $k<n / 2$.
It is also opportune to point out that not every bound in (7) is necessary; for instance we could do without assuming that $p>k, p<n-k$ nor (5), but we will use these conditions to ease our further calculations.

3. Main result

We recall that a function $u \in W^{p, q}$ is a minimizer of functional (4) if and only if u satisfy the Euler equation:

$$
\begin{equation*}
\int_{B_{1}(0)}\left[p \sum_{i=1}^{k}\left|D_{i} u\right|^{p-2} D_{i} u D_{i} \varphi+A q \sum_{i=k+1}^{n}\left|D_{i} u\right|^{q-2} D_{i} u D_{i} \varphi\right] d x=0 \tag{8}
\end{equation*}
$$

for every $\varphi \in W_{0}^{p, q}$, that is the subset of $W^{p, q}$, consisting of those functions who vanish at $\partial B_{1}(0)$.
If we integrate by parts in (8), it follows that a classical solution of such equation should be a function satisfying the second order partial differential equation

$$
\begin{equation*}
\sum_{i=1}^{k}\left|D_{i} u\right|^{p-2} D_{i}\left(D_{i} u\right)+A \frac{q(q-1)}{p(p-1)} \sum_{i=k+1}^{n}\left|D_{i} u\right|^{q-2} D_{i}\left(D_{i} u\right)=0 . \tag{9}
\end{equation*}
$$

Our first purpose is to perform a suitable change of variables in equation (9), in order to turn it into an ordinary differential equation. To this aim we set

$$
\begin{equation*}
r=\left(\sum_{i=1}^{k}\left|x_{i}\right|^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}}, \quad R=\left(\sum_{i=k+1}^{n}\left|x_{i}\right|^{\frac{q}{q-1}}\right)^{\frac{q-1}{q}} \quad \text { and } \quad \rho=\frac{r^{p}}{R^{q}} \tag{10}
\end{equation*}
$$

and we will look for a solution u of (9) such that $u=u(\rho)$. First of all we prove the following result

Lemma 3.1. Let r, R and ρ be defined by (10). Then a function $u=u(\rho)$ satisfies equation (9) if and only if it is a solution to the following second order ordinary differential equation

$$
\begin{align*}
& p(p-1) \rho u^{\prime \prime}\left[1+B \rho^{q-p+1}\left|u^{\prime}\right|^{q-p}\right] \\
& +u^{\prime}\left[p^{2}-2 p+k+B \frac{p(p-1)\left(q^{2}-n+k\right)}{q(q-1)} \rho^{q-p+1}\left|u^{\prime}\right|^{q-p}\right]=0 \tag{11}
\end{align*}
$$

for a suitable constant $B=B(A, p, q)>0$.
Proof: By assuming that $u\left(x_{1}, \ldots, x_{n}\right)=u(\rho)$, for every $i=1, \ldots, n$ we have (for our convenience, in the following we will use the notation $\rho_{x_{i}}$ for $D_{i} \rho \ldots$)

$$
\begin{equation*}
D_{i} u=u^{\prime}(\rho) \rho_{x_{i}} \quad \text { and } \quad D_{i}\left(D_{i} u\right)=u^{\prime \prime}(\rho) \rho_{x_{i}}^{2}+u^{\prime}(\rho) \rho_{x_{i} x_{i}} \tag{12}
\end{equation*}
$$

and, by putting derivatives (12) into equation (9) we obtain that:

$$
\sum_{i=1}^{k}\left|u_{x_{i}}\right|^{p-2} u_{x_{i} x_{i}}=\left|u^{\prime}(\rho)\right|^{p-2}\left[u^{\prime \prime}(\rho) \sum_{i=1}^{k}\left|\rho_{x_{i}}\right|^{p}+u^{\prime}(\rho) \sum_{i=1}^{k}\left|\rho_{x_{i}}\right|^{p-2} \rho_{x_{i} x_{i}}\right]
$$

and

$$
\sum_{i=k+1}^{n}\left|u_{x_{i}}\right|^{q-2} u_{x_{i} x_{i}}=\left|u^{\prime}(\rho)\right|^{q-2}\left[u^{\prime \prime}(\rho) \sum_{i=k+1}^{n}\left|\rho_{x_{i}}\right|^{q}+u^{\prime}(\rho) \sum_{i=k+1}^{n}\left|\rho_{x_{i}}\right|^{q-2} \rho_{x_{i} x_{i}}\right] .
$$

Moreover, as we can easily see, if $i=1, \ldots, k$:

$$
\begin{equation*}
\rho_{x_{i}}=p \frac{r_{x_{i}}}{r} \rho \quad \text { and } \quad \rho_{x_{i} x_{i}}=p(p-1) \frac{r_{x_{i}}^{2}}{r^{2}} \rho+p \frac{r_{x_{i} x_{i}}}{r} \rho \tag{13}
\end{equation*}
$$

while, if $i=k+1, \ldots, n$:

$$
\begin{equation*}
\rho_{x_{i}}=-q \frac{R_{x_{i}}}{R} \rho \quad \text { and } \quad \rho_{x_{i} x_{i}}=q(q+1) \frac{R_{x_{i}}^{2}}{R^{2}} \rho-q \frac{R_{x_{i} x_{i}}}{R} \rho \tag{14}
\end{equation*}
$$

By definition (10) it follows that

$$
\begin{equation*}
r_{x_{i}}=\frac{x_{i}\left|x_{i}\right|^{\frac{2-p}{p-1}}}{r^{\frac{1}{p-1}}}, \quad r_{x_{i} x_{i}}=\frac{1}{p-1} \frac{\left|x_{i}\right|^{\frac{2-p}{p-1}}}{r^{\frac{2}{p-1}}}\left[1-\left(\frac{\left|x_{i}\right|}{r}\right)^{\frac{p}{p-1}}\right] \tag{15}
\end{equation*}
$$

and, analogously

$$
\begin{equation*}
R_{x_{i}}=\frac{x_{i}\left|x_{i}\right|^{\frac{2-q}{q-1}}}{R^{\frac{1}{q-1}}}, \quad R_{x_{i} x_{i}}=\frac{1}{q-1} \frac{\left|x_{i}\right|^{\frac{2-q}{q-1}}}{R^{\frac{2}{q-1}}}\left[1-\left(\frac{\left|x_{i}\right|}{R}\right)^{\frac{q}{q-1}}\right] \tag{16}
\end{equation*}
$$

So, by (13), (14), (15) and (16) we have

$$
\sum_{i=1}^{k}\left|\rho_{x_{i}}\right|^{p}=\left(\frac{p}{r} \rho\right)^{p} \sum_{i=1}^{k}\left|r_{x_{i}}\right|^{p}=\left(\frac{p}{r} \rho\right)^{p} \frac{1}{r^{\frac{p}{p-1}}} \sum_{i=1}^{k}\left|x_{i}\right|^{p+\frac{p(2-p)}{p-1}}=\left(\frac{p}{r} \rho\right)^{p}
$$

and similarly

$$
\sum_{i=k+1}^{n}\left|\rho_{x_{i}}\right|^{q}=\left(\frac{q}{R} \rho\right)^{q}
$$

Moreover

$$
\sum_{i=1}^{k}\left|\rho_{x_{i}}\right|^{p-2} \rho_{x_{i} x_{i}}=\left(\frac{p}{r^{\frac{p}{p-1}}} \rho\right)^{p-1}\left(\frac{p^{2}-2 p+k}{p-1}\right)
$$

and

$$
\sum_{i=k+1}^{n}\left|\rho_{x_{i}}\right|^{q-2} \rho_{x_{i} x_{i}}=\left(\frac{q}{R^{\frac{q}{q-1}}} \rho\right)^{q-1}\left(\frac{q^{2}-n+k}{q-1}\right)
$$

Finally, equation (9) becomes

$$
\begin{aligned}
& \left|u^{\prime}\right|^{p-2}\left[u^{\prime \prime}\left(\frac{p}{r} \rho\right)^{p}+u^{\prime}\left(\frac{p}{r^{\frac{p}{p-1}}} \rho\right)^{p-1}\left(\frac{p^{2}-2 p+k}{p-1}\right)\right] \\
& +\frac{A q(q-1)}{p(p-1)}\left|u^{\prime}\right|^{q-2}\left[u^{\prime \prime}\left(\frac{q}{R} \rho\right)^{q}+u^{\prime}\left(\frac{q}{R^{\frac{q}{q-1}}} \rho\right)^{q-1}\left(\frac{q^{2}-n+k}{q-1}\right)\right]=0 \\
& \Rightarrow \quad(p \rho)^{p-1}\left|u^{\prime}\right|^{p-2}\left[p(p-1) \rho u^{\prime \prime}+\left(p^{2}-2 p+k\right) u^{\prime}\right] \\
& \quad+A \frac{(q \rho)^{q}}{p}\left|u^{\prime}\right|^{q-2}\left[q(q-1) \rho u^{\prime \prime}+\left(q^{2}-n+k\right) u^{\prime}\right]=0 \\
& \Rightarrow \quad p(p-1) \rho u^{\prime \prime}\left[1+B \rho^{q-p+1}\left|u^{\prime}\right|^{q-p}\right] \\
& \quad+u^{\prime}\left[p^{2}-2 p+k+B \frac{\left(q^{2}-n+k\right) p(p-1)}{q(q-1)} \rho^{q-p+1}\left|u^{\prime}\right|^{q-p}\right]=0
\end{aligned}
$$

where we set

$$
B=\frac{A(q-1) q^{q+1}}{(p-1) p^{p+1}}>0
$$

In order to simplify equation (11) we prove the following
Lemma 3.2. Let $\psi=\psi(\rho)$ be the positive function defined by

$$
\begin{equation*}
\psi(\rho)=B \rho^{q-p+1}\left|u^{\prime}(\rho)\right|^{q-p} \tag{17}
\end{equation*}
$$

Then equation (11) turns to

$$
\begin{equation*}
\frac{1+\psi}{\psi(D+C \psi)} \psi^{\prime}=\frac{1}{p(p-1) \rho} \tag{18}
\end{equation*}
$$

for some positive constants $C=C(n, k, p, q)$ and $D=D(k, p, q)$.
Proof: By definition (17) of ψ it follows that

$$
\psi^{\prime}(\rho)=(q-p+1) \frac{\psi(\rho)}{\rho}+\frac{(q-p) \psi(\rho)}{\left|u^{\prime}\right|^{2}} u^{\prime} u^{\prime \prime}
$$

Hence

$$
\frac{u^{\prime} u^{\prime \prime}}{\left|u^{\prime}\right|^{2}}=\frac{1}{q-p}\left(\frac{\psi^{\prime}(\rho)}{\psi(\rho)}-\frac{q-p+1}{\rho}\right)
$$

Thus, if we multiply equation (11) by $u^{\prime} /\left|u^{\prime}\right|^{2}$, we get

$$
\begin{gathered}
\frac{p(p-1)}{q-p} \rho\left[\frac{\psi^{\prime}}{\psi}-\frac{q-p+1}{\rho}\right](1+\psi)+ \\
+\left[p^{2}-2 p+k+\frac{p(p-1)\left(q^{2}-n+k\right)}{q(q-1)} \psi\right]=0 \\
\Rightarrow \quad \frac{p(p-1)}{q-p} \rho(1+\psi) \psi^{\prime}+\left[p^{2}-2 p+k-\frac{p(p-1)(q-p+1)}{q-p}\right] \psi \\
+\left[\frac{p(p-1)\left(q^{2}-n+k\right)}{q(q-1)}-\frac{p(p-1)(q-p+1)}{q-p}\right] \psi^{2}=0 \\
\Rightarrow \quad p(p-1) \rho(1+\psi) \psi^{\prime}+[k(q-p)-p(q-1)] \psi \\
\quad-\frac{p(p-1)}{q(q-1)}[q(p-1)+(n-k)(q-p)] \psi^{2}=0
\end{gathered}
$$

Finally, by setting

$$
C=\frac{p(p-1)}{q(q-1)}[(n-k)(q-p)+q(p-1)]>0
$$

and

$$
D=q(p-k)+p(k-1)>0
$$

the latter equation turns to

$$
p(p-1) \rho(1+\psi) \psi^{\prime}-(D+C \psi) \psi=0
$$

which easily leads to (18).
Remark 2. It is not difficult to show that, under assumptions (7), we have

$$
C<p(p-1)<D
$$

We now integrate the first order ordinary differential equation (18) obtaining that

$$
\begin{equation*}
\psi(\rho)(D+C \psi(\rho))^{\frac{D}{C}-1}=E \rho^{\frac{D}{p(p-1)}} \tag{19}
\end{equation*}
$$

where E is a positive constant, coming out from the integration.
By investigating equation (19) we can easily see that, if we let $r \rightarrow 0$ while $R>0$ (i.e. if $\rho \rightarrow 0$), then

$$
\begin{equation*}
\psi(\rho) \rightarrow 0 \quad \text { as } \quad \rho^{\frac{D}{p(p-1)}} \tag{20}
\end{equation*}
$$

that is $\psi(\rho)$ is an infinitesimal of degree $D / p(p-1)$ as $\rho \rightarrow 0$.
On the other hand, if we let $R \rightarrow 0$ and $r>0$ (i.e. if $\rho \rightarrow+\infty$), then

$$
\begin{equation*}
\psi(\rho) \rightarrow+\infty \quad \text { as } \quad \rho^{\frac{C}{p(p-1)}} \tag{21}
\end{equation*}
$$

hence $\psi(\rho)$ is an infinite of order $C / p(p-1)$ as $\rho \rightarrow+\infty$.
Let us denote by B_{s}^{k} the k-dimensional ball of radius s and fix $\varepsilon \in(0,1)$. We set

$$
S_{\varepsilon}^{k}=B_{\varepsilon}^{k} \times \mathbb{R}^{n-k}=\left\{x \in \mathbb{R}^{n}: r<\varepsilon\right\}
$$

and

$$
S_{\varepsilon}^{n-k}=\mathbb{R}^{k} \times B_{\varepsilon}^{n-k}=\left\{x \in \mathbb{R}^{n}: R<\varepsilon\right\}
$$

Because of (20) and (21), from now on we will consider u as it is defined in the set

$$
\Omega=B_{1} \backslash\left(S_{\varepsilon}^{k} \cup S_{\varepsilon}^{n-k}\right)
$$

By (20) and (21) it follows that, as far as $x \in \Omega, \psi$ turns out to be bounded, i.e. we can set

$$
\begin{equation*}
M=\sup _{\Omega} \psi(\rho)<\infty \tag{22}
\end{equation*}
$$

Now, since $D_{i} u=u^{\prime}(\rho) D_{i} \rho$, by (17) we obtain

$$
\begin{equation*}
\left|D_{i} u\right|=\frac{p}{B^{\frac{1}{q-p}}} \frac{R^{\frac{q}{q-p}}}{r^{\frac{1}{p-1}+\frac{q}{q-p}}}\left|x_{i}\right|^{\frac{1}{p-1}} \psi^{\frac{1}{q-p}} \quad \text { for every } \quad i=1, \ldots, k \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{i} u\right|=\frac{q}{B^{\frac{1}{q-p}}} \frac{R^{\frac{p}{q-p}-\frac{1}{q-1}}}{r^{\frac{p}{q-p}}}\left|x_{i}\right|^{\frac{1}{q-1}} \psi^{\frac{1}{q-p}} \quad \text { for every } \quad i=k+1, \ldots, n \tag{24}
\end{equation*}
$$

At this point, we are in condition to prove the following result:
Theorem 3.1. Let $\psi:[0,+\infty) \rightarrow[0,+\infty)$ be the solution of equation (18) and let $u: B_{1}(0) \rightarrow \mathbb{R}$ be the function related to ψ by (17). Then the following properties hold:
i) $u \in W^{p, q} \cap C^{1}(\Omega)$.
ii) u is a classical solution to equation (9) in Ω and then is a class $C^{1}(\Omega)$ minimizer of functional (1).
Remark 3. More generally, we may assert that u is a bounded and C^{1} minimizer of functional (1) in the set $\mathbb{R}^{n} \backslash\left(S_{\varepsilon}^{k} \cup S_{\varepsilon}^{n-k}\right)$.

Proof of i): (23) and (24) easily lead to

$$
\begin{align*}
\sum_{i=1}^{k}\left|D_{i} u\right|^{p} & =\left(\frac{p}{B^{\frac{1}{q-p}}}\right)^{p} \frac{R^{\frac{p q}{q-p}}}{r^{\frac{p q}{q-p}}} \psi^{\frac{p}{q-p}} \tag{25}\\
\sum_{i=k+1}^{n}\left|D_{i} u\right|^{q} & =\left(\frac{q}{B^{\frac{1}{q-p}}}\right)^{q} \frac{R^{\frac{p q}{q-p}}}{r^{\frac{p q}{q-p}}} \psi^{\frac{q}{q-p}} \tag{26}
\end{align*}
$$

Then the assertion follows from (22) and the fact that r and R are far from zero.
Proof of ii): Since in the set $\Omega=B_{1} \backslash\left(S_{\varepsilon}^{k} \cup S_{\varepsilon}^{n-k}\right) \psi$ solves equation (18), which is obtained by transforming Euler equation (9) for functional (4), assertion ii) follows.

4. The example

In this section we collect the results of Lemma 3.1 and 3.2 and of Theorem 3.1, to define a minimizer of functional (1) in a particular case.

Let us assume, in the above discussion, to set $D=2 C$.
It is easy to see that this happens, for instance, if we set $n=13, k=5, p=6$ and
$q=16$. Indeed in this case, we have that $D=40, C=20$ and inequalities (7) turn out to the following:

$$
5<6 \leq \max \left\{\frac{90}{13}, 8\right\}=8<16<48
$$

We recall that, under such assumptions, the minimizers of functional

$$
\begin{equation*}
\int_{B_{1}(0)}\left[\sum_{i=1}^{5}\left|D_{i} u\right|^{6}+A \sum_{i=6}^{13}\left|D_{i} u\right|^{16}\right] d x \tag{27}
\end{equation*}
$$

are bounded in $B_{1}(0)$.
Moreover, let us fix the boundary condition u_{0} in such a way that $E=C$. Then by (19) we deduce that

$$
\psi(\rho)(2+\psi(\rho))=\rho^{\frac{D}{p(p-1)}}
$$

and then, by solving this equation with respect to ψ :

$$
\begin{equation*}
\psi(\rho)=\sqrt{\rho^{\frac{D}{p(p-1)}}+1}-1 \tag{28}
\end{equation*}
$$

Furthermore in this case we have

$$
\frac{D}{p(p-1)}=\frac{4}{3} \quad \text { and } \quad B=\frac{2^{61}}{3^{6}} A
$$

Thus, by fixing the value of the coefficient $A>0$ in such a way that $B=1$, by (28) and (17), it follows that the minimizer u of functional (27) satisfy:

$$
\left|u^{\prime}(\rho)\right|=\left[\frac{\sqrt{\rho^{4 / 3}+1}-1}{\rho^{11}}\right]^{\frac{1}{10}}=\frac{1}{\rho^{29 / 30}\left[\sqrt{\rho^{4 / 3}+1}+1\right]^{1 / 10}}
$$

Finally, since $\rho=r^{6} / R^{16}$, by (23) and (24) it follows that

$$
\begin{gather*}
\left|D_{i} u\right|=6 \frac{R^{8 / 15}}{r} \frac{\left|x_{i}\right|^{1 / 5}}{\left[\sqrt{r^{8}+R^{64 / 3}}+R^{32 / 3}\right]^{1 / 10}} \quad \text { for } \quad i=1, \ldots, 5, \tag{29}\\
\left|D_{i} u\right|=16 \frac{r^{1 / 5}}{R^{8 / 15}} \frac{\left|x_{i}\right|^{1 / 15}}{\left[\sqrt{r^{8}+R^{64 / 3}}+R^{32 / 3}\right]^{1 / 10}} \quad \text { for } \quad i=6, \ldots, 13 . \tag{30}
\end{gather*}
$$

Equations (29) and (30) and the thesis of theorem 3.1 confirm that u is a minimizer of functional (27) that is bounded everywhere and is of class C^{1} in the set $\Omega=$ $B_{1} \backslash\left(S_{\varepsilon}^{5} \cup S_{\varepsilon}^{8}\right)$.

References

[1] E. Acerbi and N. Fusco, Partial regularity under anisotropic (p, q) growth conditions, J. Diff. Eq. 107 (1994), 46-67.
[2] M. Bildhauer and M. Fuchs, Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions, Zap. Nauchn. Sem. POMI, 288 (2002), 79-99
[3] L. Boccardo, P. Marcellini and C. Sbordone, L^{∞}-regularity for variational problems with sharp non standard growth conditions, Boll. U.M.I. 4-A (1990), 219-225.
[4] P. Bousquet, L. Brasco, Lipschitz regularity for orthotropic functionals with nonstandard growth conditions, Rev. Mat. Iberoam., 36 (2020), 1989-2032
[5] P. Bousquet, L. Brasco, C. Leone, Singular orthotropic functionals with nonstandard growth conditions, accepted for publication in Rev. Mat. Iberoam.
[6] A. Cianchi and V. Maz'ya, Global Lipschitz regularity for a class of quasilinear elliptic equations, Comm. Partial Differential Equations, 36 (2011), 100-133.
[7] G. Cupini, P. Marcellini, E. Mascolo and A. Passarelli Di Napoli, Lipschitz regularity for degenerate elliptic integrals with p, q-growth, Advances in Calculus of Variation, 16(2) (2023), 443-465
[8] L. Esposito, F. Leonetti and G. Mingione, Higher integrability for minimizers of integral functionals with (p, q) growth, J. Diff. Eq. 157(2) (1999), 414-438.
[9] Evans L.C. and R.F. Gariepy, Measure theory and fine properties of functions - CRC press (1992).
[10] N. Fusco and C. Sbordone, Local boundedness of minimizers in a limit case, Manus. Math. 69 (1990), 19-25.
[11] M. Giaquinta, Growth conditions and regularity, a counterexample, Manus. Math. 59 (1987), 245-248.
[12] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of the second order, Springer, New York (1983).
[13] M. C. Hong, Some remarks on the minimizers of variational integrals with non standard growth conditions, Boll. U.M.I. A6 (1992), 91-101.
[14] F. Leonetti and F. Siepe, Integrability for solutions to some anisotropic elliptic equations, Nonl. Anal. - T.M.A. 75 (2012), 2867-2873.
[15] F. Leonetti and F. Siepe, Global integrability for minimizers of anisotropic functionals, Manus. Math. 144 (2014), 91-98.
[16] G. M. Lieberman, Gradient estimates for a new class of degenerate elliptic and parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), 497-522
[17] G. M. Lieberman, Gradient estimates for anisotropic elliptic equations, Adv. Differential Equations, 10 (2005), 767-812
[18] P. Marcellini, Un example de solution discontinue d'un problème variationel dans le cas scalaire, Preprint Dip. Mat. "U.Dini", Firenze (1987).
[19] P. Marcellini, Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions, Arch. Rat. Mech. and Analysis 105 (1989), 267-284.
[20] P. Marcellini, Growth conditions and regularity for weak solutions to nonlinear elliptic pdes, J. Math. Anal. Appl. 501(1) (2021), 1-32.
[21] G. Mingione and F. Siepe, Full $C^{1, \alpha}$-regularity for minimizers of integral functionals with $L \log L$-growth, Z. Anal. Anwendungen 18 (1999), 1083-1100.
[22] F. Siepe, Regularity of minimizers of a class of anisotropic integral functionals of the calculus of variations, Rend. Mat. Univ. Roma VII, 19 (1999), 195-210.
[23] F. Siepe, Regularity for minimizers of anisotropic functionals in the calculus of variations, Ph.D. Thesis, Univ. Firenze (1999).
[24] F. Siepe, On the Lipschitz regularity of minimizers of anisotropic functionals, J. Math. Anal. Appl. 263(1) (2001), 69-94.
[25] B. Stroffolini, Global boundedness of solutions of anisotropic variational problems, Boll. U.M.I. 5-A (1991), 345-352.
F.Siepe

Dipartimento di Ingegneria Civile, Università di Salerno, Via Giovanni Paolo II - 84084 Fisciano (SA), Italy.

Email address: fsiepe@unisa.it, francesco.siepe@gmail.com

[^0]: 2010 Mathematics Subject Classification. 49N60, 35J60, 35B65, 35A24.
 Key words and phrases. Calculus of variations, anisotropic functional, minimizers, regularity. Submitted December 9, 2023.

