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SOME REMARKS ON THE HIGHER REGULARITY OF
MINIMIZERS OF ANISOTROPIC FUNCTIONALS

FRANCESCO SIEPE

ABSTRACT. We consider the anisotropic integral functional of the calculus of

variations
n
/ Zci\DiuV”‘ dz,
Q

i=1
where ¢; > 0 and 2 < p; < p;4; foreveryi=1,...n— 1.
We exhibit a minimizer of such functional, for an opportune choice of the expo-
nents p;, which turns out to be bounded everywhere and Lipschitz continuous
(or even of class C) in an opportune subset of Q.

1. INTRODUCTION

Since the second half of the eighties, many people interested to the study of the
regularity properties of minimizers of functionals of the calculus of variations of the

type

Z(u,Q) = /Q > cifi(Diu)dz, (1)
i=1

where 2 C R™(n > 2), is an open bounded set, u: Q@ - R, ¢; >0fori=1,...,n
are constants and f; : R — [0,+00) are functions satisfying, for every ¢ € R the
following non standard growth condition:
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for every ¢ = 1,...,n and some positive constants 0 < A < A. Moreover, some
further assumption, such as a strong ellipticity condition of the kind

S e > vyl
=1 =1

is assumed for every £, € R™ and some v > 0.
Authors often refer to such a functional as the othotropic functional.

pi72|771|27

A minimizer of functional (1) is a function u which belongs to the anisotropic
Sobolev space

whed(Q) = {ve WH3(Q): Dive LP(Q), Vi=1,...,n}, (2)

and such that
T(u, Q) < Z(v,9Q),
for every v € Wh()(Q) such that v = u on 9.

As it is well known, there exists minimizers of functional (1), that are not
bounded, if the exponents p; are too far apart (see [18], [11], [13]).
To be more precise about this point, it is opportune to introduce the harmonic
mean of the exponents p;, that is

-]

i=1 Pi
and its Sobolev conjugate p* defined as

pr = np — if p<n,
n—p
while p* is any number strictly greater than p otherwise.

In [18] and [11] for instance it is proved that, if n > 6, p;, = 2 for every i =
1,...,n—1 and p, = 4, then there exists a minimizer of functional (1) which is not
bounded at some point of the unit ball in Q@ = B;(0) C R™.

This result can be generalized obtaining that, if p; > p* for some ¢, then the
minimizer v may not be bounded.
On the other hand, it has also been proved (see [3], [10], [25]) that the minimizers

of functional (1) are bounded, provided

<t 3
[ax pi <P (3)

A question arise at this point:

7is the bound (3) sufficient to get higher regularity (namely, Lipschitz regularity)
for the minimizers of functional (1)?”

In [1], the same problem is taken into account in the vectorial case, that is for
u:QCR® = RY (N > 1), and a very important result is proved under assumption

(3) :

" there exists an open subset Qo of Q, such that |2\ Qo] =0 and u € C’llo’?(Qo,RN)
for some a. € (0,1)”.
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Therefore, if condition (3) holds in the vectorial case, we have Holder regularity
of minimizers, up to a set of measure zero. In literature we often refer to this
property as partial regularity of minimizers.

In the scalar case, higher regularity results have been obtained by paying the
price of a stronger bound for the exponents p; (see for instance [19], [22] and the
references quoted there).

Moreover, in [16] and [17] it is proven that any bounded minimizer of functional
(1) is Lipschitz continuous, but this proof is known to have some flaws, while in [4]
the same result is obtained for any choice of the exponents 2 < p;, < -+ < p,.

The goal of this paper is to exhibit an example of a minimizer u of functional
(1).
For the construction of the minimizer we will choose the exponents p1, ..., p, in such
a way that they satisfy bound (3) as well as some further lower bound. Moreover
we will make some assumption about the dependences of u from the variables
T1,...,Tyn, that will force us to slightly reduce the set where the minimizer itself is
defined.

2. STATEMENTS AND ASSUMPTIONS

Let k € N such that 1 < k < n and consider the anisotropic functional (1) in the

case of p1 =pg =+ =pp =p > 2 and prt1 = prt2 = - = p, = ¢ > p. Moreover
we assume that ¢y =co =+ =¢p =1 while ¢cg41 =Cgy2="-=¢c, = A >0
k n
/ [Z [Dul’ + A Y |Dyul?| da, (4)
B1(0) [;=1 i=k+1

We assume also that a minimizer of (4) assumes a prescribed value ug at the bound-
ary of the unit ball By (0).

Our purpose is to determine an explicit a minimizer of functional (4) for suitable
values of A, p,q, k,n.

Let WP-? be the space defined by (2), when p; = p for every t = 1,...,k, p; = ¢
for every i =k +1,...,n and Q = B;(0).
As we can easily see, in this case
npq
gk +p(n — k)
Furthermore, if p < k we have that p < n while, if p > k, the same condition holds
according to

25:

n—k
q< kaP (5)

Hence, if ¢ satisfies condition (5), we can set
= npq '
k(g —p) +p(n—q)
Then, from now on, we will assume that p > k and (5) holds. Under such assump-
tions, it easily follows that ¢ < p*. For our convenience, we will also assume that
q>n—k.
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By the regularity results stated above, it follows that condition (5) for ¢, ensures
that the minimizers of functional (4) are bounded.

It is also remarkable that a sufficient upper bound for ¢ to get Lipschitz regularity
is

n+2
q <

P (6)

(see [19] and [22]). Although more recent results slightly improved bound (6) for
Lipschitz regularity, and that in [4] Lipschitz regularity is obtained just assuming
that (3) holds, for our convenience in the following we will always assume that

2 —k
k‘<p§max{ip, n—k}<q<n—p. (7)
n p—k

Remark 1. The chain of inequalities (7) stands according to
n—k
k<p< ——p = k<p<n
p—k

and that k satisfies inequalities k < p <n —k if and only if k < n/2.

1t is also opportune to point out that not every bound in (7) is necessary; for instance
we could do without assuming that p >k, p <n —k nor (5), but we will use these
conditions to ease our further calculations.

3. MAIN RESULT

We recall that a function v € W7 is a minimizer of functional (4) if and only if
u satisfy the Euler equation:

k n
/ [pz |DjuP~?DsuD;p 4+ Aq Z |Dsu|"2DjuD;p | dx = 0, (8)
B1(0) i=1 i=k+1

for every ¢ € W}, that is the subset of W?4, consisting of those functions who
vanish at 0B1(0).

If we integrate by parts in (8), it follows that a classical solution of such equation
should be a function satisfying the second order partial differential equation

k n
-1
> " [DiulP~2Di(Dju) Ladla=l) > [Dul"2Di(Dyu) = 0. (9)
i=1 plp -1 i=k+1
Our first purpose is to perform a suitable change of variables in equation (9), in
order to turn it into an ordinary differential equation. To this aim we set
p—1 a1
- 2\ " PR 7P
r= Dl R= Y fw| T and p=—.  (10)
i=1 i=k+1

and we will look for a solution u of (9) such that u = u(p). First of all we prove
the following result
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Lemma 3.1. Letr, R and p be defined by (10). Then a function u = u(p) satisfies
equation (9) if and only if it is a solution to the following second order ordinary
differential equation

p(p = pu’ [1+ Bp? PHu/|477]

p(p_l)(q —Tl—‘rk‘) q p-‘,—l‘u/‘q—p =0 (11)
q(qg—1)

for a suitable constant B = B(A,p,q) > 0.

+u' |p? —2p+k+ B

Proof: By assuming that u(zq,...,z,) = u(p), for every i« = 1,...,n we have
(for our convenience, in the following we will use the notation p,, for D;p ...)
Diu = (0)pa, and  Dy(Dsu) = ()62, + 6 (0)pa (12)
and, by putting derivatives (12) into equation (9) we obtain that:
k
S L) SR E) S
i=1
and
S LD SRR S |
i=k+1 i=k-+1 1=k+1
Moreover, as we can easily see, if i = 1,..., k:
Ty, r2
po; =p=p and  poq, = p(p — 1)t 2p+p p— (13)
while, if i =k+1,...,n
R,, R2. R..a.
e = —q—Zin and  ppa =g+ 1)y — g1BiTi 14
Po; = ¢ and poe, = q(q+ 1)y p—q—pp (14)
By definition (10) it follows that
il N P A
T T T 1 wiwi — 1 2 L= = (15)
ro—1 p—1 p3=3 r
and, analogously
2-4q 2-g —a_
Ry, = M? Ryw, = L |xi|q271 [1 - <M> q_1‘| (16)
R q—1 Ra—= R

So, by (13), (14), (15) and (16) we have
k k
_ (P P _ (P NP
; ‘pwl b= (;P) ; ‘Tﬂ:i b= (;P)

and similarly
n
> 1palt =

i=k+1

p—1 2
P pe—2p+k
E :lpwb|p 2/)90@30@ = < p) < )

k
(2—p) P
p22=p (P
= D Ll = (D)
i—1

Moreover
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and

n —1
Z o qup _ q / @?-n+k
‘ x; zix; R# g1 :
i=k+1

Finally, equation (9) becomes

Pt -2 k
|u/|p72 [u” +u( pp ,0) (p _p1+ >

Aq(q—1) ng—=2 |, ( q ) <q _n+k)
— U u u
|| et 1
2

p(p—1)
= (pp)’ WP [plp — 1)pu” + (p

+A<q%q|u'|q—2 alg— Dpu + (¢ —n + W] 0

= p(p—1)pu" [1+ Bp? P/ |977]

(¢* —n+k)plp-1)
q(g—1)

+Ul |:p2 — 2p +k+ B pqp+1|u/|qp:| =0

where we set
g Alg—1Dg™!

(p— 1)pptt =0

In order to simplify equation (11) we prove the following
Lemma 3.2. Let 1) = ¥ (p) be the positive function defined by
b(p) = BpT P/ (p) 7P (17)
Then equation (11) turns to

14 oo ]
YD +CY)"  pp—1)p’

for some positive constants C = C(n,k,p,q) and D = D(k,p,q).

Proof: By definition (17) of 1 it follows that

1/)/([)) _ (q —p+ 1)¢E)p) + (q _|£)|;/J(P) "

Hence

wu” 1 <1/)’(p)qp+1)
2 q—p \ ¥(p) p '
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Thus, if we multiply equation (11) by u’/|u’|?, we get

plp—1) [¢' q-p+1

o 1), [0 _amp i)y g,

q—p |V

(p—1(*—n+k) |
alqg—1) w]o
(pl)(qurl)]d)

+ | —2p+k+ b

A [p2—2p+k—p
q—p q—p

(pp—1(¢* —n+k) pp—Dlg—p+ 1)} W =0

+ —
I q(q—1) q—p

= plp—Dp(l+9)' + k(g —p) —plg—1)]¥

p(p—l) 2 _
—m[qu’ -1+ (n—k)(qg—p)y*=0.

Finally, by setting

c=br=l [(n—k)g—p)+aelp—1)]>0

and
D =q(p—Fk)+pk-1)>0,
the latter equation turns to
plp = 1)p(1+¥) = (D + C¥)p =0,
which easily leads to (18).

Remark 2. It is not difficult to show that, under assumptions (7), we have

C<plp—1)<D.

We now integrate the first order ordinary differential equation (18) obtaining
that

D_ _D__
¥(p) (D + Cp(p) &' = EpieD (19)
where F is a positive constant, coming out from the integration.

By investigating equation (19) we can easily see that, if we let » — 0 while R > 0
(i.e. if p — 0), then

D

bp) >0 as T, (20)
that is 1(p) is an infinitesimal of degree D/p(p — 1) as p — 0.
On the other hand, if we let R — 0 and r > 0 (i.e. if p — +00), then

W(p) = 400 as  piOD, (21)
hence 1¢(p) is an infinite of order C/p(p — 1) as p — +oc.

Let us denote by B¥ the k—dimensional ball of radius s and fix ¢ € (0,1). We
set
SF=BF xR ={zcR": r<e}
and
Srk —RF x Bk = {z € R": R<e}.
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Because of (20) and (21), from now on we will consider u as it is defined in the set
Q=B \ (SFusrh).

By (20) and (21) it follows that, as far as = € €, ¢ turns out to be bounded, i.e.
we can set

M = sup ¥(p) < oo. (22)
Q
Now, since D;u = u/'(p)D;p, by (17) we obtain

p Rﬁ 1 1 .

|Diu| = s |x;|P=T 7> for every i=1,...,k (23)
and
p 1
Rip a1
|Dju| = ql —— |xl|ﬁ 1/Jﬁ forevery i=k+1,...,n. (24)
Ba—» ra—p

At this point, we are in condition to prove the following result:

Theorem 3.1. Let 1 : [0,4+00) — [0, +00) be the solution of equation (18) and let
u: B1(0) = R be the function related to v by (17). Then the following properties
hold:

i) ue WrinCH(Q).
ii) u is a classical solution to equation (9) in Q and then is a class C*(Q)
minimizer of functional (1) .

Remark 3. More generally, we may assert that u is a bounded and C' minimizer
of functional (1) in the set R™\ (S* U SP=F).

Proof of i): (23) and (24) easily lead to

pq

2 P Pl
Ra=» _p_
Z|Diu|p = (B];> = Y7, (25)
i1 a—p ra-p
n q —Pq_
q Ra-»
> Dt = (L) s, (26
q—p -

i=k+1
Then the assertion follows from (22) and the fact that r and R are far from zero.

Proof of ii): Since in the set Q = By \ (S* U S"7*) ¢ solves equation (18),
which is obtained by transforming Euler equation (9) for functional (4), assertion
i1) follows.

4. THE EXAMPLE

In this section we collect the results of Lemma 3.1 and 3.2 and of Theorem 3.1,
to define a minimizer of functional (1) in a particular case.

Let us assume, in the above discussion, to set D = 2C.
It is easy to see that this happens, for instance, if we set n =13, k =5, p =6 and
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q = 16. Indeed in this case, we have that D = 40, C' = 20 and inequalities (7) turn
out to the following:

5<6<max{%, 8}:8<16<48.

We recall that, under such assumptions, the minimizers of functional

5 13
/ > Dl + A [Dul'| da, (27)
B1(0) i=6

i=1

are bounded in Bj(0).

Moreover, let us fix the boundary condition ug in such a way that £ = C. Then
by (19) we deduce that

_D
P(p) 2+ ¥(p)) = pro=D
and then, by solving this equation with respect to :

Y(p) =\ po T +1-1. (28)

Furthermore in this case we have

D 4 201
—_— = d B = _A.
pp-1 3 3
Thus, by fixing the value of the coefficient A > 0 in such a way that B = 1, by (28)
and (17), it follows that the minimizer u of functional (27) satisfy:

\/p4/3+11]ﬁ 1
11 - 1/10°
P 29/30 [ /o3 11+ 1] /

Finally, since p = 76/R' by (23) and (24) it follows that

/()] =

|Dju| = 6 RO il 2 for i=1,....5, (29)
Z " [V R 4 R e o
1/5 1/15
|Diul =16 24| o5 for i=6...,13.  (30)
T VTR 4 poans]

Equations (29) and (30) and the thesis of theorem 3.1 confirm that v is a minimizer
of functional (27) that is bounded everywhere and is of class C! in the set Q =
By \ (S2USE).
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