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SOME REMARKS ON THE HIGHER REGULARITY OF

MINIMIZERS OF ANISOTROPIC FUNCTIONALS

FRANCESCO SIEPE

Astrt. W onsr t nsotrop ntrl untonl o t lulus o

vrtons 

Ω


n

i=1

ci|Diu|pi

dx,

wr ci ≥ 0 n 2 ≤ pi ≤ pi+1 or vry i = 1, . . . n− 1.
W xt  mnmzr o su untonl, or n opportun o o t xpo-
nnts pi, w turns out to  oun vrywr n Lpstz ontnuous

(or vn o lss C1) n n opportun sust o Ω.

1. Introuton

Since the second half of the eighties, many people interested to the study of the
regularity properties of minimizers of functionals of the calculus of variations of the
type

I(u,Ω) =


Ω

n

i=1

cifi(Diu)dx, (1)

where Ω ⊂ Rn(n ≥ 2), is an open bounded set, u : Ω → R, ci ≥ 0 for i = 1,    , n
are constants and fi : R → [0,+∞) are functions satisfying, for every t ∈ R the
following non standard growth condition:

λtpi ≤ fi(t) ≤ Λtpi
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for every i = 1,    , n and some positive constants 0 < λ < Λ. Moreover, some
further assumption, such as a strong ellipticity condition of the kind

n

i=1

f ′′
i (ξi)ηiηi ≥ ν

n

i=1

ξipi−2ηi2,

is assumed for every ξ, η ∈ Rn and some ν > 0.
Authors often refer to such a functional as the othotropic functional.

A minimizer of functional (1) is a function u which belongs to the anisotropic
Sobolev space

W 1,(pi)(Ω) =

v ∈ W 1,2(Ω) : Div ∈ Lpi(Ω), ∀ i = 1,    , n


, (2)

and such that

I(u,Ω) ≤ I(v,Ω),
for every v ∈ W 1,(pi)(Ω) such that v = u on ∂Ω.

As it is well known, there exists minimizers of functional (1), that are not
bounded, if the exponents pi are too far apart (see [18], [11], [13]).
To be more precise about this point, it is opportune to introduce the harmonic
mean of the exponents pi, that is

p̄ = n


n

i=1

1

pi

−1

and its Sobolev conjugate p̄∗ dened as

p̄∗ =
np̄

n− p̄
if p̄ < n,

while p̄∗ is any number strictly greater than p̄ otherwise.
In [18] and [11] for instance it is proved that, if n ≥ 6, pi = 2 for every i =

1,    , n−1 and pn = 4, then there exists a minimizer of functional (1) which is not
bounded at some point of the unit ball in Ω = B1(0) ⊂ Rn.
This result can be generalized obtaining that, if pi > p̄∗ for some i, then the
minimizer u may not be bounded.
On the other hand, it has also been proved (see [3], [10], [25]) that the minimizers
of functional (1) are bounded, provided

max
1≤i≤n

pi ≤ p̄∗ (3)

A question arise at this point:

”is the bound (3) sucient to get higher regularity (namely, Lipschitz regularity)
for the minimizers of functional (1)?”

In [1], the same problem is taken into account in the vectorial case, that is for
u : Ω ⊂ Rn → RN (N > 1), and a very important result is proved under assumption
(3) :

”there exists an open subset Ω0 of Ω, such that Ω \Ω0 = 0 and u ∈ C1,α
loc (Ω0,RN )

for some α ∈ (0, 1)”.
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Therefore, if condition (3) holds in the vectorial case, we have Hölder regularity
of minimizers, up to a set of measure zero. In literature we often refer to this
property as partial regularity of minimizers.

In the scalar case, higher regularity results have been obtained by paying the
price of a stronger bound for the exponents pi (see for instance [19], [22] and the
references quoted there).
Moreover, in [16] and [17] it is proven that any bounded minimizer of functional
(1) is Lipschitz continuous, but this proof is known to have some aws, while in [4]
the same result is obtained for any choice of the exponents 2 ≤ p1,≤ · · · ≤ pn.

The goal of this paper is to exhibit an example of a minimizer u of functional
(1).
For the construction of the minimizer we will choose the exponents p1,    , pn in such
a way that they satisfy bound (3) as well as some further lower bound. Moreover
we will make some assumption about the dependences of u from the variables
x1,    , xn, that will force us to slightly reduce the set where the minimizer itself is
dened.

2. Sttmnts n ssumptons

Let k ∈ N such that 1 ≤ k < n and consider the anisotropic functional (1) in the
case of p1 = p2 = · · · = pk = p ≥ 2 and pk+1 = pk+2 = · · · = pn = q > p. Moreover
we assume that c1 = c2 = · · · = ck = 1 while ck+1 = ck+2 = · · · = cn = A > 0:



B1(0)


k

i=1

Diup +A

n

i=k+1

Diuq

dx, (4)

We assume also that a minimizer of (4) assumes a prescribed value u0 at the bound-
ary of the unit ball B1(0).
Our purpose is to determine an explicit a minimizer of functional (4) for suitable
values of A, p, q, k, n.

Let W p,q be the space dened by (2), when pi = p for every i = 1,    , k, pi = q
for every i = k + 1,    , n and Ω = B1(0).
As we can easily see, in this case

p̄ =
npq

qk + p(n− k)

Furthermore, if p ≤ k we have that p̄ < n while, if p > k, the same condition holds
according to

q <
n− k

p− k
p (5)

Hence, if q satises condition (5), we can set

p̄∗ =
npq

k(q − p) + p(n− q)


Then, from now on, we will assume that p > k and (5) holds. Under such assump-
tions, it easily follows that q ≤ p̄∗. For our convenience, we will also assume that
q > n− k.
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By the regularity results stated above, it follows that condition (5) for q, ensures
that the minimizers of functional (4) are bounded.
It is also remarkable that a sucient upper bound for q to get Lipschitz regularity
is

q <
n+ 2

n
p (6)

(see [19] and [22]). Although more recent results slightly improved bound (6) for
Lipschitz regularity, and that in [4] Lipschitz regularity is obtained just assuming
that (3) holds, for our convenience in the following we will always assume that

k < p ≤ max


n+ 2

n
p, n− k


< q <

n− k

p− k
p (7)

Remark 1. The chain of inequalities (7) stands according to

k < p <
n− k

p− k
p =⇒ k < p < n

and that k satises inequalities k < p ≤ n− k if and only if k < n2.
It is also opportune to point out that not every bound in (7) is necessary; for instance
we could do without assuming that p > k, p < n− k nor (5), but we will use these
conditions to ease our further calculations.

3. Mn rsult

We recall that a function u ∈ W p,q is a minimizer of functional (4) if and only if
u satisfy the Euler equation:



B1(0)


p

k

i=1

Diup−2DiuDiφ+Aq
n

i=k+1

Diuq−2DiuDiφ


dx = 0, (8)

for every φ ∈ W p,q
0 , that is the subset of W p,q, consisting of those functions who

vanish at ∂B1(0).
If we integrate by parts in (8), it follows that a classical solution of such equation
should be a function satisfying the second order partial dierential equation

k

i=1

Diup−2Di(Diu) +A
q(q − 1)

p(p− 1)

n

i=k+1

Diuq−2Di(Diu) = 0 (9)

Our rst purpose is to perform a suitable change of variables in equation (9), in
order to turn it into an ordinary dierential equation. To this aim we set

r =


k

i=1

xi
p

p−1

 p−1
p

, R =


n

i=k+1

xi
q

q−1

 q−1
q

and ρ =
rp

Rq
(10)

and we will look for a solution u of (9) such that u = u(ρ). First of all we prove
the following result
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Lemma 3.1. Let r, R and ρ be dened by (10). Then a function u = u(ρ) satises
equation (9) if and only if it is a solution to the following second order ordinary
dierential equation

p(p− 1)ρu′′ 1 +Bρq−p+1u′q−p


+u′

p2 − 2p+ k +B

p(p− 1)(q2 − n+ k)

q(q − 1)
ρq−p+1u′q−p


= 0 (11)

for a suitable constant B = B(A, p, q) > 0.

Proof: By assuming that u(x1,    , xn) = u(ρ), for every i = 1,    , n we have
(for our convenience, in the following we will use the notation ρxi

for Diρ ...)

Diu = u′(ρ)ρxi
and Di(Diu) = u′′(ρ)ρ2xi

+ u′(ρ)ρxixi
(12)

and, by putting derivatives (12) into equation (9) we obtain that:

k

i=1

uxi p−2uxixi = u′(ρ)p−2


u′′(ρ)

k

i=1

ρxi p + u′(ρ)
k

i=1

ρxi p−2ρxixi



and
n

i=k+1

uxi
q−2uxixi

= u′(ρ)q−2


u′′(ρ)

n

i=k+1

ρxi
q + u′(ρ)

n

i=k+1

ρxi
q−2ρxixi




Moreover, as we can easily see, if i = 1,    , k:

ρxi
= p

rxi

r
ρ and ρxixi

= p(p− 1)
r2xi

r2
ρ+ p

rxixi

r
ρ (13)

while, if i = k + 1,    , n:

ρxi = −q
Rxi

R
ρ and ρxixi = q(q + 1)

R2
xi

R2
ρ− q

Rxixi

R
ρ (14)

By denition (10) it follows that

rxi
=

xixi
2−p
p−1

r
1

p−1

, rxixi
=

1

p− 1

xi
2−p
p−1

r
2

p−1


1−

 xi
r

 p
p−1


(15)

and, analogously

Rxi
=

xixi
2−q
q−1

R
1

q−1

, Rxixi
=

1

q − 1

xi
2−q
q−1

R
2

q−1


1−

 xi
R

 q
q−1


(16)

So, by (13), (14), (15) and (16) we have

k

i=1

ρxi
p =

p
r
ρ
p k

i=1

rxi
p =

p
r
ρ
p 1

r
p

p−1

k

i=1

xip+
p(2−p)
p−1 =

p
r
ρ
p

and similarly
n

i=k+1

ρxi
q =

 q

R
ρ
q



Moreover
k

i=1

ρxi
p−2ρxixi

=


p

r
p

p−1

ρ

p−1 
p2 − 2p+ k

p− 1
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and

n

i=k+1

ρxi q−2ρxixi =


q

R
q

q−1

ρ

q−1 
q2 − n+ k

q − 1




Finally, equation (9) becomes

u′p−2


u′′

p
r
ρ
p

+ u′


p

r
p

p−1

ρ

p−1 
p2 − 2p+ k

p− 1



+
Aq(q − 1)

p(p− 1)
u′q−2


u′′

 q

R
ρ
q

+ u′


q

R
q

q−1

ρ

q−1 
q2 − n+ k

q − 1


= 0

⇒ (pρ)p−1u′p−2

p(p− 1)ρu′′ + (p2 − 2p+ k)u′

+A
(qρ)q

p
u′q−2


q(q − 1)ρu′′ + (q2 − n+ k)u′ = 0

⇒ p(p− 1)ρu′′ 1 +Bρq−p+1u′q−p


+u′

p2 − 2p+ k +B

(q2 − n+ k)p(p− 1)

q(q − 1)
ρq−p+1u′q−p


= 0

where we set

B =
A(q − 1)qq+1

(p− 1)pp+1
> 0

In order to simplify equation (11) we prove the following

Lemma 3.2. Let ψ = ψ(ρ) be the positive function dened by

ψ(ρ) = Bρq−p+1u′(ρ)q−p (17)

Then equation (11) turns to

1 + ψ

ψ(D + Cψ)
ψ′ =

1

p(p− 1)ρ
, (18)

for some positive constants C = C(n, k, p, q) and D = D(k, p, q).

Proof: By denition (17) of ψ it follows that

ψ′(ρ) = (q − p+ 1)
ψ(ρ)

ρ
+

(q − p)ψ(ρ)

u′2 u′u′′

Hence

u′u′′

u′2 =
1

q − p


ψ′(ρ)
ψ(ρ)

− q − p+ 1

ρ
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Thus, if we multiply equation (11) by u′u′2, we get

p(p− 1)

q − p
ρ


ψ′

ψ
− q − p+ 1

ρ


(1 + ψ)+

+


p2 − 2p+ k +

p(p− 1)(q2 − n+ k)

q(q − 1)
ψ


= 0

⇒ p(p− 1)

q − p
ρ(1 + ψ)ψ′ +


p2 − 2p+ k − p(p− 1)(q − p+ 1)

q − p


ψ

+


p(p− 1)(q2 − n+ k)

q(q − 1)
− p(p− 1)(q − p+ 1)

q − p


ψ2 = 0

⇒ p(p− 1)ρ(1 + ψ)ψ′ + [k(q − p)− p(q − 1)]ψ

−p(p− 1)

q(q − 1)
[q(p− 1) + (n− k)(q − p)]ψ2 = 0

Finally, by setting

C =
p(p− 1)

q(q − 1)
[(n− k)(q − p) + q(p− 1)] > 0

and

D = q(p− k) + p(k − 1) > 0,

the latter equation turns to

p(p− 1)ρ(1 + ψ)ψ′ − (D + Cψ)ψ = 0,

which easily leads to (18).

Remark 2. It is not dicult to show that, under assumptions (7), we have

C < p(p− 1) < D

We now integrate the rst order ordinary dierential equation (18) obtaining
that

ψ(ρ) (D + Cψ(ρ))
D
C −1

= Eρ
D

p(p−1) (19)

where E is a positive constant, coming out from the integration.

By investigating equation (19) we can easily see that, if we let r → 0 while R > 0
(i.e. if ρ → 0), then

ψ(ρ) → 0 as ρ
D

p(p−1) , (20)

that is ψ(ρ) is an innitesimal of degree Dp(p− 1) as ρ → 0.
On the other hand, if we let R → 0 and r > 0 (i.e. if ρ → +∞), then

ψ(ρ) → +∞ as ρ
C

p(p−1) , (21)

hence ψ(ρ) is an innite of order Cp(p− 1) as ρ → +∞.

Let us denote by Bk
s the k−dimensional ball of radius s and x ε ∈ (0, 1). We

set

Sk
ε = Bk

ε × Rn−k = x ∈ Rn : r < ε
and

Sn−k
ε = Rk ×Bn−k

ε = x ∈ Rn : R < ε
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Because of (20) and (21), from now on we will consider u as it is dened in the set

Ω = B1 \ (Sk
ε  Sn−k

ε )

By (20) and (21) it follows that, as far as x ∈ Ω, ψ turns out to be bounded, i.e.
we can set

M = sup
Ω

ψ(ρ) < ∞ (22)

Now, since Diu = u′(ρ)Diρ, by (17) we obtain

Diu =
p

B
1

q−p

R
q

q−p

r
1

p−1+
q

q−p

xi
1

p−1 ψ
1

q−p for every i = 1,    , k (23)

and

Diu =
q

B
1

q−p

R
p

q−p− 1
q−1

r
p

q−p

xi
1

q−1 ψ
1

q−p for every i = k + 1,    , n (24)

At this point, we are in condition to prove the following result:

Theorem 3.1. Let ψ : [0,+∞) → [0,+∞) be the solution of equation (18) and let
u : B1(0) → R be the function related to ψ by (17). Then the following properties
hold:

i) u ∈ W p,q  C1(Ω).
ii) u is a classical solution to equation (9) in Ω and then is a class C1(Ω)

minimizer of functional (1) .

Remark 3. More generally, we may assert that u is a bounded and C1 minimizer
of functional (1) in the set Rn \ (Sk

ε  Sn−k
ε ).

Proof of i): (23) and (24) easily lead to

k

i=1

Diup =


p

B
1

q−p

p
R

pq
q−p

r
pq

q−p

ψ
p

q−p , (25)

n

i=k+1

Diuq =


q

B
1

q−p

q
R

pq
q−p

r
pq

q−p

ψ
q

q−p  (26)

Then the assertion follows from (22) and the fact that r and R are far from zero.

Proof of ii): Since in the set Ω = B1 \ (Sk
ε  Sn−k

ε ) ψ solves equation (18),
which is obtained by transforming Euler equation (9) for functional (4), assertion
ii) follows.

4. T xmpl

In this section we collect the results of Lemma 3.1 and 3.2 and of Theorem 3.1,
to dene a minimizer of functional (1) in a particular case.

Let us assume, in the above discussion, to set D = 2C.
It is easy to see that this happens, for instance, if we set n = 13, k = 5, p = 6 and
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q = 16. Indeed in this case, we have that D = 40, C = 20 and inequalities (7) turn
out to the following:

5 < 6 ≤ max


90

13
, 8


= 8 < 16 < 48

We recall that, under such assumptions, the minimizers of functional


B1(0)


5

i=1

Diu6 +A

13

i=6

Diu16

dx, (27)

are bounded in B1(0).

Moreover, let us x the boundary condition u0 in such a way that E = C. Then
by (19) we deduce that

ψ(ρ) (2 + ψ(ρ)) = ρ
D

p(p−1)

and then, by solving this equation with respect to ψ:

ψ(ρ) =


ρ

D
p(p−1) + 1− 1 (28)

Furthermore in this case we have

D

p(p− 1)
=

4

3
and B =

261

36
A

Thus, by xing the value of the coecient A > 0 in such a way that B = 1, by (28)
and (17), it follows that the minimizer u of functional (27) satisfy:

u′(ρ) =


ρ4/3 + 1− 1

ρ11

 1
10

=
1

ρ29/30


ρ4/3 + 1 + 1
1/10 

Finally, since ρ = r6R16, by (23) and (24) it follows that

Diu = 6
R8/15

r

xi1/5√
r8 +R64/3 +R32/3

1/10 for i = 1,    , 5, (29)

Diu = 16
r1/5

R8/15

xi1/15√
r8 +R64/3 +R32/3

1/10 for i = 6,    , 13 (30)

Equations (29) and (30) and the thesis of theorem 3.1 conrm that u is a minimizer
of functional (27) that is bounded everywhere and is of class C1 in the set Ω =
B1 \ (S5

ε  S8
ε ).
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