UNIQUENESS OF GENERAL DIFFERENCE DIFFERENTIAL POLYNOMIALS AND MEROMORPHIC(ENTIRE) FUNCTIONS

HARINA P. WAGHAMORE, MANJUNATH B. E.

Abstract

This study explores the uniqueness of entire and meromorphic functions with equal weights $l \geq 0$ by investigating the general differencedifferential polynomial $\Psi(z, f)$. We have extended the findings attributed to [3] and derived a new result. Additionally, we examine the implications when a polynomial of degree n shares a common value with the general differencedifferential polynomial. We have also posed an open problem for future research work.

1. Background Information, Definitions and results

A meromorphic function is a non-constant function that exhibits poles as singularities throughout the complex plane. The Nevanlinna theory of meromorphic functions provides standard notations for the discussion, as referenced by [5], [9], and [10]. If $f(z)$ and $g(z)$ share $a(z) \mathrm{CM}(\mathrm{IM})$, we refer to $a(z)$ as a small function concerning $f(z)$ if $T(r, a(z))=$ $S(r, f)$, where $S(r, f)$ is any small quantity satisfying $S(r, f)=o\{T(r, f)\}$, as $r \rightarrow \infty$, possibly outside a set of finite linear measure.

We use $N_{k)}\left(r, \frac{1}{f-a}\right)$ to represent the count of zeros of $f(z)-a$ with a multiplicity of up to k. We use $\bar{N}_{k)}\left(r, \frac{1}{f-a}\right)$ to represent the corresponding count where the multiplicity is not considered. Similarly, $N_{(k}\left(r, \frac{1}{f-a}\right)$ represents the count of zeros of $f(z)-a$ with a multiplicity greater than or equal to k, and $\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)$ represents the corresponding count where the multiplicity is not considered.

Let's say we have a function f and a non-negative integer (or infinity) k. We can define $E_{k}(a ; f)$ as the set of all points a where f equals a. If a appears as an a-point of

[^0]f with multiplicity m, we count it m times if $m \leq k$ and $k+1$ times if $m>k$. When $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f and g share the value a with weight k.

If f and g share (a, k), they also share (a, p) for any $0 \leq p \leq k$. Furthermore, f and g share a value of a either in terms of identity (IM) or counting multiplicities (CM) only if they share $(a, 0)$ or (a, ∞) respectively.
We denote $N_{L}\left(r, \frac{1}{(f-1)}\right)$ as the counting function of zeros of $f-1$ where $p>q$, with $\bar{N}_{L}\left(r, \frac{1}{(f-1)}\right)$ representing the reduced counting function. Similarly, $N_{E}^{1)}\left(r, \frac{1}{(f-1)}\right)$ denotes the counting function of zeros of $f-1$ where $p=q=1$. Suppose z_{0} is a zero of $f-1$ with multiplicity p and a zero of $g-1$ with multiplicity q. We use $N_{L}\left(r, \frac{1}{(f-1)}\right)$ to count zeros of $f-1$ where $p \geq q$, and $N_{E}^{1)}\left(r, \frac{1}{(g-1)}\right)$ follows similarly. Additionally, $N_{E}^{(2}\left(r, \frac{1}{(f-1)}\right)$ counts those 1 points of f where $p=q \geq 2$, with $N_{E}^{(2}\left(r, \frac{1}{(g-1)}\right)$ defined in a parallel manner.
Definition 1.1. [12] The difference polynomial and its shifts in $f(z)$ is defined as

$$
\begin{equation*}
\Psi_{0}(z, f)=\sum_{\lambda \in I} a_{\lambda}(z) f(z)^{i_{\lambda, 0}} f\left(z+c_{1}\right)^{i_{\lambda, 1}} \ldots f\left(z+c_{k}\right)^{i_{\lambda, k}}, \tag{1}
\end{equation*}
$$

where degree is denoted as $d\left(\Psi_{0}\right)=\max _{\lambda \in I}\{d(\lambda)\}$ and $\lambda=\left\{i_{\lambda, 0}, \ldots, i_{\lambda, k}\right\}, I$ is a finite set of the index and meromorphic co-efficients $a_{\lambda}(z)$ are satisfying $T\left(r, a_{\lambda}(z)\right)=S(r, f)$, $\lambda \in I . f(z)^{i_{\lambda, 0}} f\left(z+c_{1}\right)^{i_{\lambda, 1}} \ldots f\left(z+c_{k}\right)^{i_{\lambda, k}}$ is monomial in $f(z)$ and $f\left(z+c_{1}\right), \ldots, f\left(z+c_{k}\right)$, where c_{1}, \ldots, c_{k} are distinct non-zero complex constants and $d(\lambda)=i_{\lambda, 0}+\ldots+i_{\lambda, k}$.

Definition 1.2.The definition of the general differential-difference polynomial of $f(z)$ and its shifts, as provided in [1], is as follows.

$$
\begin{align*}
\Psi(z, f)= & \sum_{\lambda \in I} a_{\lambda}(z) f(z)^{\lambda_{0,0}} f^{(1)}(z)^{\lambda_{0,1}} \ldots f^{(m)}(z)^{\lambda_{0, m}} \\
& \times f\left(z+c_{1}\right)^{\lambda_{1,0}} f^{(1)}\left(z+c_{1}\right)^{\lambda_{1,1}} \ldots f^{(m)}\left(z+c_{1}\right)^{\lambda_{1, m}} \\
& \ldots f\left(z+c_{k}\right)^{\lambda_{k, 0}} f^{(1)}\left(z+c_{k}\right)^{\lambda_{k, 1}} \ldots f^{(m)}\left(z+c_{k}\right)^{\lambda_{k, m}} \tag{2}\\
= & \sum_{\lambda \in I} a_{\lambda}(z) \prod_{i=0}^{k} \prod_{j=0}^{m} f^{(j)}\left(z+c_{i}\right)^{\lambda_{i, j}}
\end{align*}
$$

where I is a finite set of multi-indices $\lambda=\left(\lambda_{0,0}, \ldots, \lambda_{0, m}, \lambda_{1,0}, \ldots, \lambda_{1, m}, \ldots, \lambda_{k, 0}, \ldots, \lambda_{k, m}\right)$, $c_{0}(=0)$ and $c_{1}, c_{2}, \ldots, c_{k}$ are distinct complex constants. The growth of $a_{\lambda}(z), \lambda \in I$ is $S(r, f)$.
$d(\lambda)=\sum_{i=0}^{k} \sum_{j=0}^{m} \lambda_{i, j}$ denotes the degree of the monomial $\prod_{i=0}^{k} \prod_{j=0}^{m} f^{(j)}\left(z+c_{i}\right)^{\lambda_{i, j}}$ of $\Psi(z, f)$. Then $d(\Psi)=\max _{\lambda \in I}\{d(\lambda)\}, d^{*}(\Psi)=\min _{\lambda \in I}\{d(\lambda)\}$ denote the degree and the lower degree of $\Psi(z, f)$ respectively.

The differential-difference polynomial $\Psi(z, f)$ is called a homogeneous if $d(\Psi)=d^{*}(\Psi)$ otherwise, it is a non-homogeneous.

A study on uniqueness under different conditions was conducted for $f(z)$ and $f^{(k)}(z)$ sharing a small function $[2,4,6,10$, see]. In 2008, Zhang and Lu [11] concluded.

Theorem A. [11] Suppose $k(\geq 1)$ and $n(\geq 1)$ are integers, and f is a non-constant meromorphic function. Moreover, consider a small meromorphic function a(z) concerning f, where $a(z)$ is distinct from 0 and ∞. If f^{n} and $f^{(k)}$ share the value $a(z)$ IM and

$$
4 \Theta(0, f)+(2 k+6) \Theta(\infty, f)+2 \delta_{k+2}(0, f)>12+2 k-n
$$

or f^{n} and $f^{(k)}$ share the value a(z) CM and

$$
2 \Theta(0, f)+(k+3) \Theta(\infty, f)+\delta_{k+2}(0, f)>6+k-n
$$

then $f \equiv f^{(k)}$.
In 2013, Bhoosnurmath and Kabbur extended the above result to a general differential polynomial and obtained the following results.

Theorem B. [1] Consider a non-constant meromorphic function f and a small meromorphic function $a(z)$ such that $a(z)$ is not identically equal to 0 or ∞. Let $\Psi[f]$ represent a non-constant differential polynomial in f. If f and $\Psi[f]$ share the value a IM and

$$
(2 Q+6) \Theta(\infty, f)+(2+3 \underline{d}(\Psi)) \delta(0, f)>2 Q+2 \underline{d}(\Psi)+\bar{d}(\Psi)+7
$$

then $f \equiv \Psi[f]$.
Theorem C. [1] Given a non-constant meromorphic function f and a small meromorphic function $a(z)$ such that $a(z)$ is not identically equal to 0 or ∞, along with $\Psi[f]$ denoting a non-constant differential polynomial in f, if f and $\Psi[f]$ share the value a CM and

$$
3 \Theta(\infty, f)+(\underline{d}(\Psi)+1) \delta(0, f)>4
$$

then $f \equiv \Psi[f]$.
Theorem D. [1] Suppose f is a non-constant entire function and $a(z)$ is a small meromorphic function such that $a(z)$ is not identically equal to 0 or ∞. Let $\Psi[f]$ denote a non-constant differential polynomial in f. If f and $\Psi[f]$ share the value a $I M$ and

$$
(3 \underline{d}(\Psi)+2) \delta(0, f)>2 \bar{d}(\Psi)+2
$$

then $f \equiv \Psi[f]$.
Theorem E. [1] Consider $f(z)$ as a non-constant entire function and a(z) as a small meromorphic function such that $a(z)$ is not identically equal to 0 or ∞. Let $\Psi[f]$ represent a non-constant differential polynomial in f. If f and $\Psi[f]$ share the value a $C M$ and

$$
(\underline{d}(\Psi)+1) \delta(0, f)>1
$$

then $f \equiv \Psi[f]$.

In 2020, [3] studied $\Psi(z, f)$ instead of a differential polynomial in f and proved some results:

Theorem F. [3] Given a non-constant meromorphic function $f(z)$ and a small meromorphic function $a(z)$, where $a(z)$ is not identically equal to 0 or ∞, let $\Psi(z, f)$ denote a non-constant differential-difference polynomial as defined in (2). If $f(z)$ and $\Psi(z, f)$ share the value a IM and

$$
\begin{equation*}
\Theta(\infty, f)\left(2 Q^{*}+6\right)+\delta(0, f)\left(3 d^{*}(\Psi)+2\right)>2 Q^{*}+2 d(\Psi)+8 \tag{3}
\end{equation*}
$$

then $f(z) \equiv \Psi(z, f)$.
Theorem G. [3] Assume $f(z)$ is a non-constant meromorphic function and $a(z)$ is a small meromorphic function such that $a(z) \not \equiv 0, \infty$. Let $\Psi(z, f)$ be a non-constant differentialdifference polynomial as defined in (2). If $f(z)$ and $\Psi(z, f)$ share the value a CM and

$$
\begin{equation*}
3 \Theta(\infty, f)+\delta(0, f)\left(d^{*}(\Psi)+1\right)>4 \tag{4}
\end{equation*}
$$

then $f(z) \equiv \Psi(z, f)$.

Theorem H. [3] Consider $f(z)$ as a non-constant entire function and $a(z)$ as a small meromorphic function such that $a(z)$ is not identically equal to 0 or ∞. Let $\Psi(z, f)$ denote a non-constant differential-difference polynomial as defined in (2). If $f(z)$ and $\Psi(z, f)$ share the value a IM and

$$
\begin{equation*}
\delta(0, f)\left(3 d^{*}(\Psi)+2\right)>2 d(\Psi)+2 \tag{5}
\end{equation*}
$$

then $f(z) \equiv \Psi(z, f)$.
Theorem I. [3] Given $f(z)$ as a non-constant entire function and $a(z)$ as a small meromorphic function, where $a(z)$ is not identically equal to 0 or ∞, let $\Psi(z, f)$ represent a non-constant differential-difference polynomial as defined in Definition 1. If $f(z)$ and $\Psi(z, f)$ share the value a $C M$ and

$$
\begin{equation*}
\left(d^{*}(\Psi)+1\right) \delta(0, f)>1 \tag{6}
\end{equation*}
$$

then $f(z) \equiv \Psi(z, f)$.

Question 1. What happens if the non-constant meromorphic function $f(z)$ and the differential-difference polynomial $\Psi(z, f)$ share a value a with finite weight?

Question 2. When examining a meromorphic function f within a polynomial $p(f)$ and a differential-difference polynomial $\Psi(z, f)$, what conclusions can be drawn regarding the uniqueness of $p(f)$ and $\Psi(z, f)$ when they share a value $a \mathrm{CM}(\mathrm{IM})$?

In this paper, we try to answer these two questions. Indeed, the following theorems are the main results of the paper.

Theorem 1.1. Let $f(z)$ be a non-constant meromorphic function and l be a non-negative integer. Suppose $a(\neq 0, \infty)$ is a meromorphic function satisfying $T(r, a)=o(T(r, f))$ as $r \rightarrow \infty$ such that $f(z)$ and $\Psi(z, f)$ share (a, l). If $l \geq 2$ and

$$
\begin{equation*}
\Theta(\infty, f)\left(Q^{*}+3\right)+2 \Theta(0, f)+\delta(0, f) d(\Psi) \geq Q^{*}+2 d(\Psi)-2 d^{*}(\Psi)+5 \tag{7}
\end{equation*}
$$

or $l=1$ and

$$
\begin{equation*}
\Theta(\infty, f)\left(Q^{*}+\frac{7}{2}\right)+\Theta(0, f) \frac{5}{2}+\delta(0, f) d(\Psi) \geq 2 d(\Psi)+Q^{*}-d^{*}(\Psi)+6 \tag{8}
\end{equation*}
$$

or $l=0$ and

$$
\begin{equation*}
\Theta(\infty, f)\left(2 Q^{*}+6\right)+4 \Theta(0, f)+\delta(0, f) 2 d(\Psi) \geq 4 d(\Psi)+2 Q^{*}-2 d^{*}(\Psi)+10 \tag{9}
\end{equation*}
$$

then $f(z) \equiv \Psi(z, f)$.
Example 1.1. Let $\Psi(z, f)=-f(z) f^{(1)}$, where $f(z)=e^{z}$. Then $\Psi(z, f)$ and f share $(0, \infty)$ all the conditions $(7)-(9)$ of Theorem 1.1 are satisified but $\Psi(z, f) \not \equiv f(z)$.

This example shows that the condition $a \not \equiv 0$ is necessary for Theorem 1.1.
Theorem 1.2. Suppose $f(z)$ is a non-constant meromorphic function and $a(z)$ is a small function where $a(z) \neq 0, \infty$. Let $p(z)$ be a non-zero polynomial of degree $n \geq 1$, and $\Psi(z, f)$ be a non-constant differential-difference polynomial. If $p(f)$ and $\Psi(z, f)$ share the value a IM and

$$
\begin{equation*}
\Theta(\infty, f)\left(2 Q^{*}+6\right)+\delta(0, f)\left(3 d^{*}(\Psi)+2 n\right)>2 Q^{*}+2 d(\Psi)+2 n+6 \tag{10}
\end{equation*}
$$

then $p(f) \equiv \Psi(z, f)$.

Theorem 1.3. Given a non-constant meromorphic function $f(z)$ and a small function $a(z)$ with $a(z) \neq 0, \infty$, let $p(z)$ denote a non-zero polynomial of degree $n \geq 1$. Additionally, consider $\Psi(z, f)$ as a non-constant differential-difference polynomial. If $p(f)$ and $\Psi(z, f)$ share the value a CM and

$$
\begin{equation*}
3 \Theta(\infty, f)+\left(d^{*}(\Psi)+n\right) \delta(0, f)>3+n \tag{11}
\end{equation*}
$$

then $p(f) \equiv \Psi(z, f)$.
Theorem 1.4. Considering $f(z)$ as a non-constant entire function and a(z) as a small function with $a(z) \neq 0, \infty$, let $p(z)$ represent a non-zero polynomial of degree $n \geq 1$. Furthermore, let $\Psi(z, f)$ be a non-constant differential-difference polynomial. If $p(f)$ and $\Psi(z, f)$ share the value a CM and

$$
\begin{equation*}
\delta(0, f)\left(d^{*}(\Psi)+n\right)>n, \tag{12}
\end{equation*}
$$

then $p(f) \equiv \Psi(z, f)$.
Theorem 1.5. Given $f(z)$, a non-constant entire function, and $a(z)$, a small function with $a(z) \neq 0, \infty$, along with $p(z)$, a non-zero polynomial of degree $n \geq 1$, and $\Psi(z, f)$, a non-constant differential-difference polynomial, suppose $p(f)$ and $\Psi(z, f)$ share the value a IM and

$$
\begin{equation*}
\left(3 d^{*}(\Psi)+2 n\right) \delta(0, f)>2 d(\Psi)+2 n, \tag{13}
\end{equation*}
$$

then $p(f) \equiv \Psi(z, f)$.
Example 1.2. Let p be a polynomial of degree one and $f=e^{z}, \Psi(z, f)=f^{(2)}(z)^{\frac{1}{2}} f(z+$ $2 \pi i)^{\frac{1}{2}}$. Here, by definition of (1.1) and by $\Psi(z, f)$ we observe that $d(\Psi)=\lambda_{0,1}+\lambda_{1,0}=$ $\frac{1}{2}+\frac{1}{2}=1$, i.e., $d(\Psi)=1, d^{*}(\Psi)=\lambda_{0,1}+\lambda_{1,0}=\frac{1}{2}+\frac{1}{2}=1$, i.e., $d^{*}(\Psi)=1$ and $Q^{*}=3 \lambda_{0,1}+\lambda_{1,0}=2$, i.e., $Q^{*}=2$. Also $\bar{N}(r, f)=S(r, f)$ and $\bar{N}(r, 0 ; f)=\bar{N}\left(r, 0 ; e^{z}\right) \sim$ $T(r, f)$. Then $\Theta(\infty, f)=1$ and $\delta(0, f)=0$. The deficiency conditions in (10), (11), (12), and (13) are not satisfied, but $p(f) \equiv \Psi(z, f)$.

Hence, this example demonstrates that the conditions we have obtained are sufficient but not necessary for ensuring $p(f) \equiv P(z, f)$, in Theorems 1.1, 1.2, 1.3 and 1.4
Remark 1. Let's examine the cases where $i=0$ or $i=1$. Assuming $c_{1}=0$, according to the definition of $\Psi(z, f)$, we obtain

$$
\begin{aligned}
\Psi(z, f) & =\sum_{\lambda \in I} a_{\lambda}(z) f(z)^{\lambda_{0,0}+\lambda_{1,0}} f^{(1)}(z)^{\lambda_{0,1}+\lambda_{1,1}} \ldots f^{(m)}(z)^{\lambda_{0, m}+\lambda_{1, m}} \\
& =\sum_{\lambda \in I} a_{\lambda}(z) f(z)^{n_{i 0}} f^{(1)}(z)^{n_{i 1}} \ldots f^{(m)}(z)^{n_{i m}}=\Psi[f],
\end{aligned}
$$

where $n_{i 0}=\lambda_{0,0}+\lambda_{1,0}, n_{i 1}=\lambda_{0,1}+\lambda_{1,1}, \ldots, n_{i m}=\lambda_{0, m}+\lambda_{1, m}, i=0,1$. Then taking $d(\Psi)=\bar{d}(\Psi)$, and $d^{*}(\Psi)=\underline{d}(\Psi)$, we get
(1) In theorem 1.2, we get

$$
\Theta(\infty, f)(2 Q+6)+\delta(0, f)(3 \underline{d}(\Psi)+2)>2 Q+2 \bar{d}(\Psi)+8
$$

this signifies an advancement upon the outcome presented in Theorem. B.
(2) In Theorem 1.3, we get

$$
3 \Theta(\infty, f)+(\underline{d}(\Psi)+1) \delta(0, f)>4,
$$

which aligns with Theorem C.
(3) In Theorem 1.4, we get

$$
(\underline{d}(\Psi)+1) \delta(0, f)>1
$$

which aligns with Theorem E.
(4) In Theorem 1.5, we get

$$
(3 \underline{d}(\Psi)+2) \delta(0, f)>2 d(\Psi)+2
$$

which aligns with Theorem D.

2. Lemmas

Lemma 2.1. [8] Suppose $f(z)$ is a non-constant meromorphic function.

$$
\begin{gather*}
N\left(r, \frac{1}{f^{(k)}}\right)=N\left(r, \frac{1}{f}\right)+T\left(r, f^{(k)}\right)-T(r, f)+S(r, f) \tag{14}\\
N\left(r, \frac{1}{f^{(k)}}\right) \leq k \bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+S(r, f) \tag{15}
\end{gather*}
$$

Lemma 2.2. [9] Consider the expression $\varphi=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)$, where F and G are two non-constant meromorphic functions. If F and G share 1 IM and $\varphi \not \equiv 0$, then

$$
\begin{equation*}
N_{E}^{1)}\left(r, \frac{1}{F-1}\right) \leq N(r, \varphi)+S(r, F)+S(r, G) \tag{16}
\end{equation*}
$$

Lemma 2.3. [7] Suppose $f(z)$ is a transcendental meromorphic function of zero order, and let q and η be two non-zero complex constants. Then

$$
\begin{aligned}
T(r, f(q z+\eta)) & =T(r, f(z))+S(r, f), \\
N(r, \infty ; f(q z+\eta)) & \leq N(r, \infty ; f(z))+S(r, f), \\
N(r, 0 ; f(q z+\eta)) & \leq N(r, 0 ; f(z))+S(r, f), \\
\bar{N}(r, \infty ; f(q z+\eta)) & \leq \bar{N}(r, \infty ; f(z))+S(r, f), \\
\bar{N}(r, 0 ; f(q z+\eta)) & \leq \bar{N}(r, 0 ; f(z))+S(r, f) .
\end{aligned}
$$

Lemma 2.4. [3] Suppose $f(z)$ is a meromorphic function and $\Psi(z, f)$ is a differentialdifference polynomial in f. Then

$$
\begin{equation*}
m\left(r, \frac{\Psi(z, f)}{f^{d^{*}(\Psi)}}\right) \leq\left(d(\Psi)-d^{*}(\Psi)\right) m(r, f)+S(r, f) \tag{17}
\end{equation*}
$$

Lemma 2.5. [3] Consider $f(z)$ as a meromorphic function and $\Psi(z, f)$ as a differentialdifference polynomial in f. Then

$$
\begin{equation*}
m\left(r, \frac{\Psi(z, f)}{f^{d(\Psi)}}\right) \leq\left(d(\Psi)-d^{*}(\Psi)\right) m\left(r, \frac{1}{f}\right)+S(r, f) \tag{18}
\end{equation*}
$$

Lemma 2.6. [3] Consider $f(z)$ as a meromorphic function and $\Psi(z, f)$ as a differentialdifference polynomial in f. Then

$$
\begin{equation*}
N(r, \Psi(z, f)) \leq d(\Psi) N(r, f)+Q^{*} \bar{N}(r, f)+S(r, f) \tag{19}
\end{equation*}
$$

Lemma 2.7. [3] Consider $f(z)$ as a meromorphic function and a differential-difference polynomial $\Psi(z, f)$ in f. Then

$$
\begin{equation*}
N\left(r, \frac{\Psi(z, f)}{f^{d(\Psi)}}\right) \leq Q^{*}\left(\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right)+\left(d(\Psi)-d^{*}(\Psi)\right) N\left(r, \frac{1}{f}\right)+S(r, f) \tag{20}
\end{equation*}
$$

Lemma 2.8. [3]Consider $f(z)$ as a meromorphic function and a differential-difference polynomial $\Psi(z, f)$ in f. Then

$$
\begin{equation*}
N\left(r, \frac{\Psi(z, f)}{f^{d^{*}(\Psi)}}\right) \leq\left(d(\Psi)-d^{*}(\Psi)\right) N(r, f)+Q^{*}\left(\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right)+S(r, f) \tag{21}
\end{equation*}
$$

Lemma 2.9. [3] Consider $f(z)$ as a meromorphic function and a differential-difference polynomial $\Psi(z, f)$ in f. Then

$$
\begin{equation*}
T(r, \Psi(z, f)) \leq d(\Psi) T(r, f)+Q^{*} \bar{N}(r, f)+S(r, f) \tag{22}
\end{equation*}
$$

where $Q^{*}=\max _{0 \leq i \leq k, \lambda \in I}\left\{\lambda_{i, 1}+2 \lambda_{i, 2}+\ldots+m \lambda_{i, m}\right\}$.
Lemma 2.10. [3] Consider $f(z)$ as a meromorphic function and a differential-difference polynomial $\Psi(z, f)$ in f. If $\Psi(z, f) \not \equiv 0$, then we have

$$
\begin{align*}
& \begin{array}{l}
N\left(r, \frac{1}{\Psi(z, f)}\right) \leq T(r, \Psi(z, f))-T\left(r, f^{d(\Psi)}\right)+\left(d(\Psi)-d^{*}(\Psi)\right) m\left(r, \frac{1}{f}\right) \\
+N\left(r, \frac{1}{f^{d(\Psi)}}\right)+S(r, f)
\end{array} \\
& N\left(r, \frac{1}{\Psi(z, f)}\right) \leq Q^{*} \bar{N}(r, f)+\left(d(\Psi)-d^{*}(\Psi)\right) m\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{d(\Psi)}}\right)+S(r, f), \tag{23}\\
& \text { where } Q^{*}=\max _{0 \leq i \leq k, \lambda \in I}\left\{\lambda_{i, 1}+2 \lambda_{i, 2}+\ldots+m \lambda_{i, m}\right\} . \tag{24}
\end{align*}
$$

Lemma 2.11. [3] Consider $f(z)$ as a meromorphic function and a differential-difference polynomial $\Psi(z, f)$ in f of degree d and let $Q^{*}=\lambda_{0,1}+2 \lambda_{0,2}+\ldots+m \lambda_{0, m}$. Then

$$
T(r, \Psi(z, f))=O(T(r, f)), S(r, \Psi(z, f))=S(r, f)
$$

Lemma 2.12. [3] Consider f and g a non constant meromorphic functions
i) if f and g share $(0,1)$, then

$$
\begin{equation*}
N_{L}\left(r, \frac{1}{f-1}\right) \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+S(r) \tag{25}
\end{equation*}
$$

Here, as r approaches infinity, $S(r)=o(T(r))$, where $T(r)=\max T(r, f), T(r, g)$.
ii) if f and g share $(1,1)$, then

$$
\begin{align*}
& 2 \bar{N}_{L}\left(r, \frac{1}{g-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{f-1}\right)- \bar{N}_{f \geq 2}\left(r, \frac{1}{g-1}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{f-1}\right) \\
& \leq N\left(r, \frac{1}{g-1}\right)-\bar{N}\left(r, \frac{1}{g-1}\right) . \tag{26}
\end{align*}
$$

3. Proof of Main Results

Proof of Theorem 1.1. Consider $F=\frac{f}{a}$ and $G=\frac{\Psi(z, f)}{a}$. Then $F-1=\frac{f-a}{a}$ and $G-1=\frac{\Psi(z, f)-a}{a}$.

Given that $f(z)$ and $\Psi(z, f)$ share (a, l), we can conclude that F and G share $(1, l)$ except at the zeros and poles of a. Additionally, observe that

$$
\begin{gathered}
\bar{N}(r, F)=\bar{N}(r, f) \\
\bar{N}(r, G)=\bar{N}(r, \Psi(z, f)=\bar{N}(r, f)+s(r, f)
\end{gathered}
$$

Define,

$$
\begin{equation*}
\varphi=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \tag{27}
\end{equation*}
$$

Claim $\varphi=0$,
suppose on the contrary that $\varphi \neq 0$. Theerefore from (27), we have

$$
m(r, f)=S(r, f)
$$

By the Nevanlinna Second fundemental theoerm of, we have

$$
\begin{align*}
T(r, G)+T(r, F) \leq & \bar{N}\left(r, \frac{1}{F}\right)+2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}\left(r, \frac{1}{G-1}\right)-N_{0}\left(r, \frac{1}{F^{\prime}}\right)-N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) \tag{28}
\end{align*}
$$

$N_{0}\left(r, \frac{1}{F^{\prime}}\right)$ represents the counting function of zeros of F^{\prime} that are distinct from the zeros of $F(F-1)$. Similarly $N_{0}\left(r, \frac{1}{G^{\prime}}\right)$ is defined.

Case 1. From (28), when $l \geq 1$, we have

$$
\begin{aligned}
\bar{N}_{E}^{1}\left(r, \frac{1}{F-1}\right) \leq & N\left(r, \frac{1}{\varphi}\right)+S(r, f), \leq N(r, \varphi)+S(r, f) \\
\leq & \bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f),
\end{aligned}
$$

and so,

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{G-1}\right)+\bar{N}\left(r, \frac{1}{F-1}\right)= & N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}\left(r, \frac{1}{G-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+S(r, f) \\
\leq & \bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}(r, f)+2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right) \\
& +2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right)+N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right) \\
& +\bar{N}_{E}^{(2}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)+S(r, f) \tag{29}
\end{align*}
$$

Subcase 1.1. When $l=1$, we have,

$$
\begin{equation*}
\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \leq \frac{1}{2} N\left(r, 1 / F^{\prime} \mid F \neq 0\right) \leq \frac{1}{2} \bar{N}\left(r, \frac{1}{F}\right)+\frac{1}{2} \bar{N}(r, F), \tag{30}
\end{equation*}
$$

Here, $N\left(r, 1 / F^{\prime} \mid F \neq 0\right)$ represents the zeros of F^{\prime} excluding those of F. Combining (26) and (30), we obtain

$$
\begin{align*}
2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{E}^{(2} & \left(r, \frac{1}{F-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{G-1}\right)+\frac{1}{2}\left(\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)\right)+S(r, f) \tag{31}
\end{align*}
$$

Thus, from (31) and (30), we have

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \leq & \bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}(r, f)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\frac{1}{2} \bar{N}(r, f) \\
& +T(r, G)+N_{0}\left(r, \frac{1}{F^{\prime}}\right)+\frac{1}{2} \bar{N}\left(r, \frac{1}{f}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right) \\
& +S(r, f) \tag{32}
\end{align*}
$$

From (28), (32), and using (24), we have

$$
T(r, F) \leq \frac{7}{2} \bar{N}(r, f)+N\left(r, \frac{1}{G}\right)+\frac{5}{2} \bar{N}\left(r, \frac{1}{f}\right)+S(r, f)
$$

$$
T(r, f) \leq\left[(1-\Theta(\infty, f))\left(Q^{*}+\frac{7}{2}\right)+(1-\Theta(0, f)) \frac{5}{2}+(1-\delta(0, f)) d(\Psi)+\left(d(\Psi)-d^{*}(\Psi)\right)\right]
$$

$$
T(r, f)+S(r, f)
$$

$$
\Theta(\infty, f)\left(Q^{*}+\frac{7}{2}\right)+\Theta(0, f) \frac{5}{2}+\delta(0, f) d(\Psi) \leq Q^{*}+2 d(\Psi)-d^{*}(\Psi)+5
$$

This contradicts the assertion in (8).
Subcase 1.2. For $l \geq 2$, under these circumstances, we have

$$
\begin{aligned}
2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right)+ & \bar{N}_{E}^{(2}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{G-1}\right)+S(r, f)
\end{aligned}
$$

Derived from (29), we acquire,

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) & \leq \bar{N}(r, f)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+N\left(r, \frac{1}{G-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{F}\right) \\
& +N_{0}\left(r, \frac{1}{G^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right) \\
& \leq \bar{N}(r, f)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+T(r, G) \\
& +N_{0}\left(r, \frac{1}{G^{\prime}}\right)+N_{0}\left(r, \frac{1}{F^{\prime}}\right)+S(r, f) \tag{33}
\end{align*}
$$

Now from (28), (24) and (33), we obtain

$$
\begin{aligned}
& T(r, F) \leq 3 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{F}\right)+N\left(r, \frac{1}{G}\right)+S(r, f) \\
& \leq\left(Q^{*}+3\right) \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f}\right) d(\Psi)+m\left(r, \frac{1}{f}\right)\left(d(\Psi)-d^{*}(\Psi)\right) \\
&+S(r, f), \\
& T(r, f) \leq\left[(1-\Theta(\infty, f))\left(Q^{*}+3\right)+2(1-\Theta(0, f))+(1-\delta(0, f)) d(\Psi)+\left(d(\Psi)-d^{*}(\Psi)\right)\right] \\
& T(r, f)+S(r, f) \\
& \Theta(\infty, f)\left(Q^{*}+3\right)+2 \Theta(0, f)+\delta(0, f) d(\Psi) \leq 2 d(\Psi)+Q^{*}-d^{*}(\Psi)+4,
\end{aligned}
$$

This contradicts the assertion in (7).
Case 2. In the case where $l=0$, we then have:

$$
N_{E}^{1)}\left(r, \frac{1}{F-1}\right)=N_{E}^{1)}\left(r, \frac{1}{G-1}\right)+S(r, f), \quad \bar{N}_{E}^{(2}\left(r, \frac{1}{G-1}\right)=\bar{N}_{E}^{(2}\left(r, \frac{1}{F-1}\right)+S(r, f)
$$

And also, from (3.2), we have

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) & \leq N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+N_{E}^{(2}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)+S(r, f), \\
\bar{N}\left(r, \frac{1}{G-1}\right)+\bar{N}\left(r, \frac{1}{F-1}\right) & \leq \bar{N}(r, F)+N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+N_{E}^{(2}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \tag{34}\\
& +S(r, f) .
\end{align*}
$$

From (25), (26), (28), and (8), we get

$$
\begin{gathered}
T(r, G)+T(r, F) \leq 2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \\
-\left(N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right)\right)+S(r, f), \\
T(r, F) \leq 4 \bar{N}\left(r, \frac{1}{f}\right)+6 \bar{N}(r, f)+2 N\left(r, \frac{1}{G}\right)+S(r, f), \\
T(r, f) \leq\left[(1-\Theta(\infty, f))\left(2 Q^{*}+6\right)+(1-\Theta(0, f)) 4+(1-\delta(0, f)) 2 d(\Psi)+2\left(d(\Psi)-d^{*}(\Psi)\right)\right] \\
T(r, f)+S(r, f) .
\end{gathered}
$$

We obtain,
$\Theta(\infty, f)\left(2 Q^{*}+6\right)+\Theta(0, f) 4+\delta(0, f) 2 d(\Psi) \leq 4 d(\Psi)+2 Q^{*}-2 d^{*}(\Psi)+9$.
This contradicts the assertion in (9).
This confirms the assertion, demonstrating that $\varphi \equiv 0$. Thus, according to (27), we deduce that

$$
\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}=\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}
$$

so on integrating twice, we obtain

$$
\begin{equation*}
\frac{1}{F-1}=\frac{\mathcal{A}}{G-1}+\mathcal{B} . \tag{35}
\end{equation*}
$$

$$
\mathcal{A} \neq 0 \text { and } \mathcal{B} \text { are constant. }
$$

In this context, three possible cases can emerge:
Subcase 1.1. When $\mathcal{B} \neq 0,-1$, from (35), we get

$$
\frac{F-1}{\mathcal{B}+1-\mathcal{B} F}=\frac{G-1}{\mathcal{A}}, \quad \bar{N}\left(r, \frac{1}{F-\frac{\mathcal{B}+1}{\mathcal{B}}}\right)=\bar{N}(r, G)
$$

Under these conditions, the Nevanlinna Second fundamental theorem provides:

$$
\begin{aligned}
T(r, f) & =T(r, F)+S(r, f), \\
& \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F-\frac{D+1}{D}}\right)+S(r, f), \\
& \leq[(1-\Theta(0, f))+2(1-\Theta(\infty, f))] T(r, f)+S(r, f), \\
& \quad \Theta(0, f)+2 \Theta(\infty, f) \leq 2 .
\end{aligned}
$$

This contradicts the assertion in (7), (8) and (9).

Subcase 1.2. Assuming $\mathcal{B}=0$, according to (35), we get:

$$
\begin{equation*}
G=\mathcal{A} F-(\mathcal{A}-1) \tag{36}
\end{equation*}
$$

Our assertion is that $\mathcal{A}=1$. Suppose $\mathcal{A} \neq 1$. Then, based on (36), we obtain:

$$
\bar{N}(r, G)=\bar{N}\left(r, \frac{1}{F-\frac{\mathcal{A}-1}{\mathcal{A}}}\right)
$$

Using the Nevanlinna second fundamental theorem and (24), we obtain

$$
\begin{gathered}
T(r, f)= \\
\leq(r, F)+S(r, f) \\
\leq \\
\leq \\
\leq \\
\\
\quad-d^{*}\left(\left(1-\Theta(\Psi) \frac{1}{F}\right)+\bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F-\frac{D+1}{D}}\right)+S(r, f)\right)\left(Q^{*}+1\right)-\Theta(0, f)+(1-\delta(0, f)) d(\Psi)+d(\Psi)+S(r, f) \\
\Theta(\infty, f)\left(Q^{*}+1\right)+
\end{gathered}
$$

Thus $\mathcal{A}=1$, and in this case, from (3.11)

$$
F=G
$$

and so $f(z)=\Psi(z, f)$.
Subcase 1.3. Suppose $\mathcal{B}=-1$ from (35),

$$
\begin{align*}
& \frac{1}{F-1}=\frac{\mathcal{A}}{G-1}-1 \tag{37}\\
& \Longrightarrow F=\frac{\mathcal{A}}{\mathcal{A}-G+1} \tag{38}
\end{align*}
$$

If $\mathcal{A} \neq-1$

$$
\bar{N}\left(r, \frac{1}{F-\frac{\mathcal{A}}{\mathcal{A}+1}}\right)=\bar{N}\left(r, \frac{1}{G}\right)
$$

Applying the same reasoning as in subcase 1.2 leads to a contradiction. Hence, $\mathcal{A}=-1$.
From (38), we have:

$$
\begin{gather*}
G F \equiv 1 \\
\text { i.e., } f(z) .[\Psi(z, f)] \equiv a^{2} \tag{39}
\end{gather*}
$$

Therefore, under these conditions, we have $\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$,
Based on (38) and (39), along with the first fundamental theorem,

$$
\begin{aligned}
&(1+d(\Psi)) T(r, f)=T\left(r, \frac{1}{f^{d(\Psi)+1}}\right) \\
& \leq m\left(r, \frac{\Psi(z, f)}{f^{d(\Psi)}}\right)+N\left(r, \frac{\Psi(z, f)}{f^{d(\Psi)}}\right)+S(r, f) \\
& \leq T(r, f)\left(d(\Psi)-d^{*}(\Psi)\right)+S(r, f) \\
&\left(1+d^{*}(\Psi)\right) T(r, f) \leq S(r, f)
\end{aligned}
$$

Which is a contradiction.

Proof of theorem 1.2.

$$
\begin{equation*}
F=\frac{\Psi(z, f)}{a} \quad G=\frac{p(f)}{a}, \tag{40}
\end{equation*}
$$

Given that $p(f)$ and $\Psi(z, f)$ share a IM, it implies that F and G also share 1 IM. Now, utilizing lemmaLemma 2.11 and from (1), we can deduce

$$
\begin{gather*}
T(r, G) \leq T(r, f)+S(r, f), \tag{41}\\
\bar{N}(r, F)=\bar{N}(r, \Psi(z, f)=\bar{N}(r, f)+S(r, f), \\
\bar{N}(r, G)=\bar{N}(r, f)+S(r, f), \tag{42}\\
\bar{N}_{E}^{1)}\left(r, \frac{1}{F-1}\right)=\bar{N}_{E}^{1)}\left(r, \frac{1}{G-1}\right)+S(r, f), \tag{43}\\
\bar{N}_{E}^{(2}\left(r, \frac{1}{F-1}\right)=\bar{N}_{E}^{(2}\left(r, \frac{1}{G-1}\right)+S(r, f), \tag{44}\\
\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+S(r, f), \tag{45}\\
\bar{N}\left(r, \frac{1}{F-1}\right)=\bar{N}\left(r, \frac{1}{G-1}\right)+S(r, f) \\
\leq N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+\bar{N}_{E}^{(2}\left(r, \frac{1}{F-1}\right)+N_{L}\left(r, \frac{1}{F-1}\right) \tag{46}\\
\quad+N_{L}\left(r, \frac{1}{G-1}\right)+S(r, f) .
\end{gather*}
$$

Suppose that $\varphi \not \equiv 0$. Then we have,

$$
\begin{align*}
N(r, \varphi) \leq & N_{(2}\left(r, \frac{1}{F}\right)+\bar{N}(r, G)+N_{(2}\left(r, \frac{1}{G}\right)+N_{L}\left(r, \frac{1}{F-1}\right) \\
& +N_{L}\left(r, \frac{1}{G-1}\right)+N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right), \tag{47}
\end{align*}
$$

Here, $N_{0}\left(r, \frac{1}{F^{\prime}}\right)$ represents the counting function for the zeros of F^{\prime} excluding those shared with F and $F-1$. Similarly, $N_{0}\left(r, \frac{1}{G^{\prime}}\right)$ is defined similarly.
Applying the second fundamental theorem yields

$$
\begin{align*}
T(r, G)+T(r, F) \leq & \bar{N}(r, F)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}\left(r, \frac{1}{G-1}\right)-N_{0}\left(r, \frac{1}{F^{\prime}}\right)-N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) \tag{48}
\end{align*}
$$

Given that F and G share 1 IM , we deduce from (46)

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)= & 2 N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+2 N_{L}\left(r, \frac{1}{F-1}\right) \\
& +2 N_{L}\left(r, \frac{1}{G-1}\right)+2 \bar{N}_{E}^{(2}\left(r, \frac{1}{F-1}\right) . \tag{49}
\end{align*}
$$

From this, (16) and (47), we get

$$
\begin{gather*}
\bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \leq N_{(2}\left(r, \frac{1}{F}\right)+\bar{N}(r, G)+N_{(2}\left(r, \frac{1}{G}\right)+N_{0}\left(r, \frac{1}{F^{\prime}}\right) \\
+3 N_{L}\left(r, \frac{1}{F-1}\right)+3 N_{L}\left(r, \frac{1}{G-1}\right)+N_{E}^{1)}\left(r, \frac{1}{F-1}\right) \\
+2 N_{E}^{(2}\left(r, \frac{1}{F-1}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) . \tag{50}
\end{gather*}
$$

We now note that

$$
\begin{align*}
& N_{L}\left(r, \frac{1}{F-1}\right)+ 2 N_{E}^{(2}\left(r, \frac{1}{F-1}\right)+2 N_{L}\left(r, \frac{1}{G-1}\right)+N_{E}^{1)}\left(r, \frac{1}{F-1}\right) \tag{51}\\
& \leq N\left(r, \frac{1}{G-1}\right) \leq T(r, G)+O(1)
\end{align*}
$$

Combining (50) and (51) yields

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{G-1}\right)+\bar{N}\left(r, \frac{1}{F-1}\right) \leq & N_{(2}\left(r, \frac{1}{F}\right)+N_{(2}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+2 N_{L}\left(r, \frac{1}{F-1}\right) \\
& +N_{L}\left(r, \frac{1}{G-1}\right)+T(r, G)+N_{0}\left(r, \frac{1}{F^{\prime}}\right) \\
& +N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f) . \tag{52}
\end{align*}
$$

Employing (52) within (48) and (42), results in

$$
\begin{align*}
T(r, F) \leq & 3 \bar{N}(r, G)+N\left(r, \frac{1}{F}\right)+N\left(r, \frac{1}{G}\right)+2 N_{L}\left(r, \frac{1}{F-1}\right)+N_{L}\left(r, \frac{1}{G-1}\right) \tag{53}\\
& +S(r, f) .
\end{align*}
$$

Utilizing (53) and (23) yields

$$
\begin{align*}
T(r, \Psi(z, f)) \leq & N\left(r, \frac{1}{\Psi(z, f)}\right)+3 \bar{N}(r, G)+N\left(r, \frac{1}{f}\right)+2 N_{L}\left(r, \frac{1}{F-1}\right)+N_{L}\left(r, \frac{1}{G-1}\right) \\
& +S(r, f) \\
T(r, f) d(\Psi) \leq & n N\left(r, \frac{1}{f}\right)+3 \bar{N}(r, f)+\left(d(\Psi)-m\left(r, \frac{1}{f}\right) d^{*}(\Psi)\right)+N\left(r, \frac{1}{f^{d(\Psi)}}\right) \\
& +2 N_{L}\left(r, \frac{1}{F-1}\right)+N_{L}\left(r, \frac{1}{G-1}\right)+S(r, f) . \tag{54}
\end{align*}
$$

From (15), (23), and (40), we get

$$
\begin{align*}
2 N_{L}\left(r, \frac{1}{F-1}\right)+N_{L}\left(r, \frac{1}{G-1}\right) \leq & 2 N\left(r, \frac{1}{F^{\prime}}\right)+N\left(r, \frac{1}{G^{\prime}}\right) \\
\leq & \bar{N}(r, f)\left(2 Q^{*}+3\right)+(2 d(\Psi)+n) N\left(r, \frac{1}{f}\right) \tag{55}\\
& +2 m\left(r, \frac{1}{f}\right)\left(d(\Psi)-d^{*}(\Psi)\right)+S(r, f) .
\end{align*}
$$

Again using (55) in (54), we get

$$
\begin{aligned}
& T(r, f) d(\Psi) \leq n N\left(r, \frac{1}{f}\right)+3 \bar{N}(r, G)+\left(d(\Psi)-d^{*}(\Psi)\right) m\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{d(\Psi)}}\right) \\
&+\bar{N}(r, f)\left(2 Q^{*}+3\right)+N\left(r, \frac{1}{f}\right)(2 d(\Psi)+n) \\
&+2\left(d(\Psi)-d^{*}(\Psi)\right) m\left(r, \frac{1}{f}\right)+S(r, f) \\
& T(r, f)\left(3 d^{*}(\Psi)-2 d(\Psi)\right) \leq \bar{N}(r, f)\left(2 Q^{*}+6\right)+N\left(r, \frac{1}{f}\right)\left(3 d^{*}(\Psi)+2 n\right)+S(r, f) .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{equation*}
\Theta(\infty, f)\left(2 Q^{*}+6\right)+\delta(0, f)\left(3 d^{*}(\Psi)+2 n\right) \leq 2\left(Q^{*}+n+d(\Psi)\right)+6 \tag{56}
\end{equation*}
$$

which contradicts (10).

Thus, $\varphi=0$.
Integrating φ results in

$$
\begin{equation*}
\frac{1}{G-1}=\frac{\mathcal{A}}{F-1}+\mathcal{B}, \tag{57}
\end{equation*}
$$

Here, $(\mathcal{A} \neq 0)$ and \mathcal{B} are constants. Consequently,

$$
\begin{equation*}
G=\frac{(\mathcal{B}+1) F+(\mathcal{A}-\mathcal{B}-1)}{\mathcal{B} F+(\mathcal{A}-\mathcal{B})}, \quad F=\frac{(\mathcal{B}-\mathcal{A}) G+(\mathcal{A}-\mathcal{B}-1)}{\mathcal{B} G-(\mathcal{B}+1)} . \tag{58}
\end{equation*}
$$

We examine the following three cases.
Case 1.Suppose $\mathcal{B} \neq 0,-1$. According to (58), we have

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{G-\frac{(\mathcal{B}+1)}{\mathcal{B}}}\right)=\bar{N}(r, F) . \tag{59}
\end{equation*}
$$

From this, along with the second fundamental theorem, we have

$$
\begin{aligned}
T(r, G) & \leq \bar{N}\left(r, \frac{1}{G-\frac{(\mathcal{B + 1)}}{\mathcal{B}}}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, f), \\
n T(r, f) & \leq\left(2 Q^{*}+6\right) \bar{N}(r, f)+\left(3 d^{*}(\Psi)+2 n\right) N\left(r, \frac{1}{f}\right)+S(r, f),
\end{aligned}
$$

Therefore, we have

$$
\Theta(\infty, f)\left(2 Q^{*}+6\right)+\delta(0, f)\left(3 d^{*}(\Psi)+2 n\right) \leq 3 d^{*}(\Psi)+2 Q^{*}+7,
$$

which contradicts (10).
Case 2.If $\mathcal{B}=0$, then according to (58), we have

$$
\begin{equation*}
G=\frac{F+(\mathcal{A}-1)}{\mathcal{A}}, \quad F=\mathcal{A} G-(\mathcal{A}-1) . \tag{60}
\end{equation*}
$$

Our assertion is that $\mathcal{A}=1$. Assuming $\mathcal{A} \neq 1$, then from (60), we obtain

$$
\begin{equation*}
N\left(r, \frac{1}{F}\right)=N\left(r, \frac{1}{G-\frac{(\mathcal{A}-1)}{\mathcal{A}}}\right) . \tag{61}
\end{equation*}
$$

With this and the Nevanlinna second fundamental theorem, we obtain

$$
\begin{aligned}
& T(r, G) \leq \bar{N}\left(r, \frac{1}{G}\right)+N\left(r, \frac{1}{G-\frac{(\mathcal{A}-1)}{\mathcal{A}}}\right)+\bar{N}(r, G)+S(r, f), \\
& \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{\Psi(z, f)}\right)+S(r, f), \\
& {\left[n-d(\Psi)+d^{*}(\Psi)\right] T(r, f) \leq\left(Q^{*}+1\right) \bar{N}(r, f)+(n+d(\Psi)) N\left(r, \frac{1}{f}\right)+S(r, f) . }
\end{aligned}
$$

So, we have

$$
\left(Q^{*}+1\right) \Theta(\infty, f)+(n+d(\Psi)) \delta(0, f) \leq Q^{*}+2 d(\Psi)-d^{*}(\Psi)+1
$$

this contradicts (10).
Hence, $\mathcal{A}=1$. According to (60), we have $G \equiv F$.
Thus, $p(f(z)) \equiv \Psi(z, f)$.
Case 3. If $\mathcal{B}=-1$, then according to (58), we have

$$
\begin{equation*}
G=\frac{\mathcal{A}}{-F+\mathcal{A}+1}, \quad F=\frac{(1+\mathcal{A}) G-\mathcal{A}}{G} . \tag{62}
\end{equation*}
$$

In case $\mathcal{A} \neq-1$, we deduce from (62) that

$$
\begin{equation*}
N\left(r, \frac{1}{G-\frac{\mathcal{A}}{(\mathcal{A}+1)}}\right)=N\left(r, \frac{1}{F}\right) . \tag{63}
\end{equation*}
$$

Using the same reasoning as in case 2 , we arrive at a contradiction.
Hence, $\mathcal{A}=-1$.
From (62), we obtain

$$
\begin{equation*}
G F=1 \tag{64}
\end{equation*}
$$

That is,

$$
\begin{equation*}
p(f) \cdot \Psi(z, f)=a^{2} \tag{65}
\end{equation*}
$$

From (65), we have

$$
\begin{equation*}
N\left(r, \frac{1}{f}\right)+N(r, f)=S(r, f) \tag{66}
\end{equation*}
$$

Employing (62), (65), Lemma Lemma 2.10, and the Nevanlinna first fundamental theorem, we derive

$$
\begin{aligned}
T(r, f)(d(\Psi)+n) & =T\left(r, \frac{1}{f^{d(\Psi)+n}}\right) \\
& =T\left(r, \frac{\Psi(z, f)}{f^{d(\Psi)} \cdot a^{2}}\right)+S(r, f) \\
& \leq T\left(r, \frac{1}{f}\right)\left(d(\Psi)-d^{*}(\Psi)\right)+S(r, f)
\end{aligned}
$$

We have,

$$
\begin{equation*}
\left(d^{*}(\Psi)+n\right) T(r, f) \leq S(r, f) \tag{67}
\end{equation*}
$$

This leads to a contradiction.
Thus, the proof of Theorem 1.2 is complete.
Proof of Theorem 1.3. Consider the definitions of F and G as given in (40). From the theorem's hypothesis, it follows that F and G share 1 CM . Hence,

$$
\begin{equation*}
\bar{N}_{L}\left(r, \frac{1}{F-1}\right)=\bar{N}_{L}\left(r, \frac{1}{G-1}\right)=0 \tag{68}
\end{equation*}
$$

Continuing similarly to the Proof of Theorem 1.1, we arrive at (54), which is:

$$
\begin{aligned}
T(r, f) d(\Psi) \leq & n N\left(r, \frac{1}{f}\right)+3 \bar{N}(r, G)+m\left(r, \frac{1}{f}\right)\left(d(\Psi)-d^{*}(\Psi)\right)+N\left(r, \frac{1}{f^{d(\Psi)}}\right) \\
& +2 N_{L}\left(r, \frac{1}{F-1}\right)+N_{L}\left(r, \frac{1}{G-1}\right)+S(r, f)
\end{aligned}
$$

Using (68) in (54), we get

$$
\begin{aligned}
& T(r, f) d(\Psi) \leq N\left(r, \frac{1}{f^{d(\Psi)}}\right)+3 \bar{N}(r, G)+m\left(r, \frac{1}{f}\right)\left(d(\Psi)-d^{*}(\Psi)\right)+n N\left(r, \frac{1}{f}\right) \\
&+S(r, f) \\
& \leq 3 \bar{N}(r, f)+\left(d(\Psi)-d^{*}(\Psi)\right)\left[T(r, f)-N\left(r, \frac{1}{f}\right)\right]+d(\Psi) N\left(r, \frac{1}{f}\right) \\
&+n N\left(r, \frac{1}{f}\right)+S(r, f), \\
& T(r, f) d^{*}(\Psi) \leq\left(d^{*}(\Psi)+n\right) N\left(r, \frac{1}{f}\right)+3 \bar{N}(r, f)+S(r, f) .
\end{aligned}
$$

Thus, we have

$$
3 \Theta(\infty, f)+\delta(0, f)\left(d^{*}(\Psi)+n\right) \leq 3+n
$$

This contradicts (11).
Therefore, $\varphi \equiv 0$. Following a similar approach to the Proof of theorem 1.2, we establish Theorem 1.3.
Thus, the proof of Theorem 1.3 is concluded.
3.1. Proof of Theorem 1.4. Given the hypothesis that $f(z)$ is a non-constant entire function, we can employ $N(r, f)=S(r, f)$ in the Proof of Theorem 1.2 to derive the proof of Theorem 1.4.
3.2. Proof of Theorem 1.5. Given the hypothesis that $f(z)$ is a non-constant entire function, we can utilize $N(r, f)=S(r, f)$ in the Proof of Theorem 1.3 to derive the proof of Theorem 1.5.

Open Question 1.1. Considering the non-constant meromorphic function $f_{1}^{p} p\left(f_{1}\right)$, where $f_{1}=z-c$ for some $c \in \mathbb{C}$, along with the differential-difference polynomial $\Psi(z, f)$, what implications arise if they share a value a with finite weight?

REFERENCES

[1] Bhoosnurmath, Subhas S.; Kabbur, Smita R. On entire and meromorphic functions that share one small function with their differential polynomial. Int. J. Anal. 2013, Art. ID 926340, 8 pp.
[2] Bhoosnurmath, S. S.; Patil, Anupama J. On the growth and value distribution of meromorphic functions and their differential polynomials. J. Indian Math. Soc. (N.S.) 74 (2007), no. 3-4, 167184 (2008).
[3] H. P. Waghamore and S. B. Vijaylaxmi. Unicity result sharing one small function with the general differential-difference polynomial.
[4] Liu, Lipei; Gu, Yongxing. Uniqueness of meromorphic functions that share one small function with their derivatives. Kodai Math. J. 27 (2004), no. 3, 272-279.
[5] Li, Nan; Yang, Lian-Zhong. Meromorphic function that shares one small function with its differential polynomial. Kyungpook Math. J. 50 (2010), no. 3, 447-454.
[6] Manjunath BE, and Harina P. Waghamore, "Uniqueness of meromorphic functions and their powers in set sharing" Journal of Applied Analysis (2024). https://doi.org/10.1515/jaa-2023-0044
[7] Xu, Hong Yan; Liu, Kai; Cao, Ting Bin. Uniqueness and value distribution for q-shifts of meromorphic functions. Math. Commun. 20 (2015), no. 1, 97-112.
[8] Yi, Hong Xun, Uniqueness of meromorphic functions and a question of C. C. Yang. Complex Variables, Theory Appl., 14 (1990), no. 1-4, 169-176.
[9] Yi, Hong-Xun. Uniqueness theorems for meromorphic functions whose nth derivatives share the same 1-points. Complex Variables Theory Appl. 34 (1997), no. 4, 421-436.
[10] Yu, Kit-Wing. On entire and meromorphic functions that share small functions with their derivatives. JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 21, 7 pp.
[11] Zhang, Tongdui; Lü, Weiran. Notes on a meromorphic function sharing one small function with its derivative. Complex Var. Elliptic Equ. 53 (2008), no. 9, 857-867.
[12] Zheng, Xiu Min; Chen, Zong Xuan. Deficiencies of some difference polynomials. (Chinese) Acta Math. Sinica (Chin. Ser.) 54 (2011), no. 6, 983-992.
[13] Zheng, Xiu-Min; Xu, Hong Yan. On the deficiencies of some differential-difference polynomials. Abstr. Appl. Anal. 2014, Art. ID 378151, 12 pp.

Harina P. Waghamore
Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore, IndiA - 560056

Email address: harinapw@gmail.com, harina@bub.ernet.in
Manjunath B. E.
Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore, IndiA - 560056

Email address: manjunath.bebub@gmail.com, manjunathbe@bub.ernet.in

[^0]: 2010 Mathematics Subject Classification. Primary 30D35.
 Key words and phrases. Meromorphic(Entire) function, Uniqueness, Differential-difference polynomial, sharing value, weighted sharing.

 Submitted April 1, 2024 Revised May 2, 2024.

