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UNIQUENESS OF GENERAL DIFFERENCE DIFFERENTIAL

POLYNOMIALS AND MEROMORPHIC(ENTIRE) FUNCTIONS

HARINA P. WAGHAMORE, MANJUNATH B. E.

Abstract. This study explores the uniqueness of entire and meromorphic
functions with equal weights l ≥ 0 by investigating the general dierence-
dierential polynomial Ψ(z, f). We have extended the ndings attributed to
[3] and derived a new result. Additionally, we examine the implications when
a polynomial of degree n shares a common value with the general dierence-
dierential polynomial. We have also posed an open problem for future re-
search work.

1. Background Information, Denitions and results

A meromorphic function is a non-constant function that exhibits poles as singularities
throughout the complex plane. The Nevanlinna theory of meromorphic functions provides
standard notations for the discussion, as referenced by [5], [9], and [10]. If f(z) and g(z)
share a(z) CM(IM), we refer to a(z) as a small function concerning f(z) if T (r, a(z)) =
S(r, f), where S(r, f) is any small quantity satisfying S(r, f) = o T (r, f), as r → ∞,
possibly outside a set of nite linear measure.

We use Nk)


r, 1

f−a


to represent the count of zeros of f(z)− a with a multiplicity of

up to k. We use Nk)


r, 1

f−a


to represent the corresponding count where the multiplicity

is not considered. Similarly, N(k


r, 1

f−a


represents the count of zeros of f(z) − a with

a multiplicity greater than or equal to k, and N (k


r, 1

f−a


represents the corresponding

count where the multiplicity is not considered.

Let’s say we have a function f and a non-negative integer (or innity) k. We can
dene Ek(a; f) as the set of all points a where f equals a. If a appears as an a-point of
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f with multiplicity m, we count it m times if m ≤ k and k + 1 times if m > k. When
Ek(a; f) = Ek(a; g), we say that f and g share the value a with weight k.

If f and g share (a, k), they also share (a, p) for any 0 ≤ p ≤ k. Furthermore, f and g
share a value of a either in terms of identity (IM) or counting multiplicities (CM) only if
they share (a, 0) or (a,∞) respectively.

We denote NL


r, 1

(f−1)


as the counting function of zeros of f − 1 where p > q, with

NL


r, 1

(f−1)


representing the reduced counting function. Similarly, N

1)
E


r, 1

(f−1)


de-

notes the counting function of zeros of f − 1 where p = q = 1. Suppose z0 is a zero of

f − 1 with multiplicity p and a zero of g − 1 with multiplicity q. We use NL


r, 1

(f−1)



to count zeros of f − 1 where p ≥ q, and N
1)
E


r, 1

(g−1)


follows similarly. Additionally,

N
(2
E


r, 1

(f−1)


counts those 1 points of f where p = q ≥ 2, with N

(2
E


r, 1

(g−1)


dened in

a parallel manner.
Denition 1.1. [12] The dierence polynomial and its shifts in f(z) is dened as

Ψ0(z, f) =


λ∈I

aλ(z)f(z)
iλ,0f(z + c1)

iλ,1 f(z + ck)
iλ,k , (1)

where degree is denoted as d(Ψ0) = maxλ∈Id(λ) and λ = iλ,0, , iλ,k, I is a nite
set of the index and meromorphic co-ecients aλ(z) are satisfying T (r, aλ(z)) = S(r, f),
λ ∈ I. f(z)iλ,0f(z+ c1)

iλ,1 f(z+ ck)
iλ,k is monomial in f(z) and f(z+ c1), , f(z+ ck),

where c1, , ck are distinct non-zero complex constants and d(λ) = iλ,0 + + iλ,k.

Denition 1.2.The denition of the general dierential-dierence polynomial of f(z)
and its shifts, as provided in [1], is as follows.

Ψ(z, f) =


λ∈I

aλ(z)f(z)
λ0,0f (1)(z)λ0,1 f (m)(z)λ0,m

× f(z + c1)
λ1,0f (1)(z + c1)

λ1,1 f (m)(z + c1)
λ1,m

f(z + ck)
λk,0f (1)(z + ck)

λk,1 f (m)(z + ck)
λk,m

=


λ∈I

aλ(z)
k

i=0

m

j=0

f (j)(z + ci)
λi,j

(2)

where I is a nite set of multi-indices λ = (λ0,0, ,λ0,m,λ1,0, ,λ1,m, ,λk,0, ,λk,m),
c0(= 0) and c1, c2, , ck are distinct complex constants. The growth of aλ(z),λ ∈ I is
S(r, f).

d(λ) =
k

i=0

m
j=0

λi,j denotes the degree of the monomial
k

i=0

m
j=0

f (j)(z + ci)
λi,j of Ψ(z, f).

Then d(Ψ) = max
λ∈I

d(λ), d∗(Ψ) = min
λ∈I

d(λ) denote the degree and the lower degree of

Ψ(z, f) respectively.

The dierential-dierence polynomial Ψ(z, f) is called a homogeneous if d(Ψ) = d∗(Ψ)
otherwise, it is a non-homogeneous.

A study on uniqueness under dierent conditions was conducted for f(z) and f (k)(z)
sharing a small function [2, 4, 6, 10, see]. In 2008, Zhang and Lu [11] concluded.

Theorem A. [11] Suppose k(≥ 1) and n(≥ 1) are integers, and f is a non-constant
meromorphic function. Moreover, consider a small meromorphic function a(z) concerning

f , where a(z) is distinct from 0 and ∞. If fn and f (k) share the value a(z) IM and

4Θ(0, f) + (2k + 6)Θ(∞, f) + 2δk+2(0, f) > 12 + 2k − n,
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or fn and f (k) share the value a(z) CM and

2Θ(0, f) + (k + 3)Θ(∞, f) + δk+2(0, f) > 6 + k − n,

then f ≡ f (k)

In 2013, Bhoosnurmath and Kabbur extended the above result to a general dierential
polynomial and obtained the following results.

Theorem B. [1] Consider a non-constant meromorphic function f and a small mero-
morphic function a(z) such that a(z) is not identically equal to 0 or ∞. Let Ψ[f ] represent
a non-constant dierential polynomial in f . If f and Ψ[f ] share the value a IM and

(2Q+ 6)Θ(∞, f) + (2 + 3d(Ψ))δ(0, f) > 2Q+ 2d(Ψ) + d(Ψ) + 7,

then f ≡ Ψ[f ]

Theorem C. [1]Given a non-constant meromorphic function f and a small meromorphic
function a(z) such that a(z) is not identically equal to 0 or ∞, along with Ψ[f ] denoting
a non-constant dierential polynomial in f , if f and Ψ[f ] share the value a CM and

3Θ(∞, f) + (d(Ψ) + 1)δ(0, f) > 4,

then f ≡ Ψ[f ]

Theorem D. [1] Suppose f is a non-constant entire function and a(z) is a small mero-
morphic function such that a(z) is not identically equal to 0 or ∞. Let Ψ[f ] denote a
non-constant dierential polynomial in f . If f and Ψ[f ] share the value a IM and

(3d(Ψ) + 2)δ(0, f) > 2d(Ψ) + 2,

then f ≡ Ψ[f ]

Theorem E. [1] Consider f(z) as a non-constant entire function and a(z) as a small
meromorphic function such that a(z) is not identically equal to 0 or ∞. Let Ψ[f ] represent
a non-constant dierential polynomial in f . If f and Ψ[f ] share the value a CM and

(d(Ψ) + 1) δ(0, f) > 1,

then f ≡ Ψ[f ]

In 2020, [3] studied Ψ(z, f) instead of a dierential polynomial in f and proved some
results:

Theorem F. [3] Given a non-constant meromorphic function f(z) and a small mero-
morphic function a(z), where a(z) is not identically equal to 0 or ∞, let Ψ(z, f) denote a
non-constant dierential-dierence polynomial as dened in (2). If f(z) and Ψ(z, f) share
the value a IM and

Θ(∞, f)(2Q∗ + 6) + δ(0, f)(3d∗(Ψ) + 2) > 2Q∗ + 2d(Ψ) + 8, (3)

then f(z) ≡ Ψ(z, f)

Theorem G. [3] Assume f(z) is a non-constant meromorphic function and a(z) is a small
meromorphic function such that a(z) ̸≡ 0,∞. Let Ψ(z, f) be a non-constant dierential-
dierence polynomial as dened in (2). If f(z) and Ψ(z, f) share the value a CM and

3Θ(∞, f) + δ(0, f)(d∗(Ψ) + 1) > 4, (4)

then f(z) ≡ Ψ(z, f)
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Theorem H. [3] Consider f(z) as a non-constant entire function and a(z) as a small
meromorphic function such that a(z) is not identically equal to 0 or ∞. Let Ψ(z, f) denote
a non-constant dierential-dierence polynomial as dened in (2). If f(z) and Ψ(z, f)
share the value a IM and

δ(0, f)(3d∗(Ψ) + 2) > 2d(Ψ) + 2, (5)

then f(z) ≡ Ψ(z, f)

Theorem I. [3] Given f(z) as a non-constant entire function and a(z) as a small mero-
morphic function, where a(z) is not identically equal to 0 or ∞, let Ψ(z, f) represent
a non-constant dierential-dierence polynomial as dened in Denition 1. If f(z) and
Ψ(z, f) share the value a CM and

(d∗(Ψ) + 1)δ(0, f) > 1, (6)

then f(z) ≡ Ψ(z, f)

Question 1.What happens if the non-constant meromorphic function f(z) and the
dierential-dierence polynomial Ψ(z, f) share a value a with nite weight?

Question 2. When examining a meromorphic function f within a polynomial p(f)
and a dierential-dierence polynomial Ψ(z, f), what conclusions can be drawn regarding
the uniqueness of p(f) and Ψ(z, f) when they share a value a CM(IM)?

In this paper, we try to answer these two questions. Indeed, the following theorems
are the main results of the paper.

Theorem 1.1. Let f(z) be a non-constant meromorphic function and l be a non-negative
integer. Suppose a(̸= 0,∞) is a meromorphic function satisfying T (r, a) = o(T (r, f)) as
r → ∞ such that f(z) and Ψ(z, f) share (a, l). If l ≥ 2 and

Θ(∞, f) (Q∗ + 3) + 2Θ(0, f) + δ(0, f)d(Ψ) ≥ Q∗ + 2d(Ψ)− 2d∗(Ψ) + 5, (7)

or l = 1 and

Θ(∞, f)


Q∗ +

7

2


+Θ(0, f)

5

2
+ δ(0, f)d(Ψ) ≥ 2d(Ψ) +Q∗ − d∗(Ψ) + 6, (8)

or l = 0 and

Θ(∞, f)(2Q∗ + 6) + 4Θ(0, f) + δ(0, f)2d(Ψ) ≥ 4d(Ψ) + 2Q∗ − 2d∗(Ψ) + 10, (9)

then f(z) ≡ Ψ(z, f).

Example 1.1. Let Ψ(z, f) = −f(z)f (1), where f(z) = ez. Then Ψ(z, f) and f share
(0,∞) all the conditions (7) - (9) of Theorem 1.1 are satisied but Ψ(z, f) ̸≡ f(z).

This example shows that the condition a ̸≡ 0 is necessary for Theorem 1.1.

Theorem 1.2. Suppose f(z) is a non-constant meromorphic function and a(z) is a small
function where a(z) ̸= 0,∞. Let p(z) be a non-zero polynomial of degree n ≥ 1, and
Ψ(z, f) be a non-constant dierential-dierence polynomial. If p(f) and Ψ(z, f) share the
value a IM and

Θ(∞, f)(2Q∗ + 6) + δ(0, f)(3d∗(Ψ) + 2n) > 2Q∗ + 2d(Ψ) + 2n+ 6, (10)

then p(f) ≡ Ψ(z, f).
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Theorem 1.3. Given a non-constant meromorphic function f(z) and a small function
a(z) with a(z) ̸= 0,∞, let p(z) denote a non-zero polynomial of degree n ≥ 1. Additionally,
consider Ψ(z, f) as a non-constant dierential-dierence polynomial. If p(f) and Ψ(z, f)
share the value a CM and

3Θ(∞, f) + (d∗(Ψ) + n)δ(0, f) > 3 + n, (11)

then p(f) ≡ Ψ(z, f).

Theorem 1.4. Considering f(z) as a non-constant entire function and a(z) as a small
function with a(z) ̸= 0,∞, let p(z) represent a non-zero polynomial of degree n ≥ 1.
Furthermore, let Ψ(z, f) be a non-constant dierential-dierence polynomial. If p(f) and
Ψ(z, f) share the value a CM and

δ(0, f)(d∗(Ψ) + n) > n, (12)

then p(f) ≡ Ψ(z, f).

Theorem 1.5. Given f(z), a non-constant entire function, and a(z), a small function
with a(z) ̸= 0,∞, along with p(z), a non-zero polynomial of degree n ≥ 1, and Ψ(z, f), a
non-constant dierential-dierence polynomial, suppose p(f) and Ψ(z, f) share the value
a IM and

(3d∗(Ψ) + 2n)δ(0, f) > 2d(Ψ) + 2n, (13)

then p(f) ≡ Ψ(z, f).

Example 1.2. Let p be a polynomial of degree one and f = ez, Ψ(z, f) = f (2)(z)
1
2 f(z +

2πi)
1
2 . Here, by denition of (1.1) and by Ψ(z, f) we observe that d(Ψ) = λ0,1 + λ1,0 =

1
2
+ 1

2
= 1, i.e., d(Ψ) = 1, d∗(Ψ) = λ0,1 + λ1,0 = 1

2
+ 1

2
= 1, i.e., d∗(Ψ) = 1 and

Q∗ = 3λ0,1 + λ1,0 = 2, i.e., Q∗ = 2. Also N(r, f) = S(r, f) and N(r, 0; f) = N(r, 0; ez) ∼
T (r, f) Then Θ(∞, f) = 1 and δ(0, f) = 0. The deciency conditions in (10), (11), (12),
and (13) are not satised, but p(f) ≡ Ψ(z, f)

Hence, this example demonstrates that the conditions we have obtained are sucient
but not necessary for ensuring p(f) ≡ P (z, f), in Theorems 1.1, 1.2, 1.3 and 1.4

Remark 1. Let’s examine the cases where i = 0 or i = 1. Assuming c1 = 0, according to
the denition of Ψ(z, f), we obtain

Ψ(z, f) =


λ∈I

aλ(z)f(z)
λ0,0+λ1,0f (1)(z)λ0,1+λ1,1 f (m)(z)λ0,m+λ1,m

=


λ∈I

aλ(z)f(z)
ni0f (1)(z)ni1 f (m)(z)nim = Ψ[f ],

where ni0 = λ0,0 + λ1,0, ni1 = λ0,1 + λ1,1, , nim = λ0,m + λ1,m, i = 0, 1. Then taking

d(Ψ) = d(Ψ), and d∗(Ψ) = d(Ψ), we get

(1) In theorem 1.2, we get

Θ(∞, f)(2Q+ 6) + δ(0, f)(3d(Ψ) + 2) > 2Q+ 2d(Ψ) + 8,

this signies an advancement upon the outcome presented in Theorem. B.

(2) In Theorem 1.3, we get

3Θ(∞, f) + (d(Ψ) + 1)δ(0, f) > 4,

which aligns with Theorem C.
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(3) In Theorem 1.4, we get

(d(Ψ) + 1)δ(0, f) > 1,

which aligns with Theorem E.

(4) In Theorem 1.5, we get

(3d(Ψ) + 2)δ(0, f) > 2d(Ψ) + 2,

which aligns with Theorem D.

2. Lemmas

Lemma 2.1. [8] Suppose f(z) is a non-constant meromorphic function.

N


r,

1

f (k)


= N


r,

1

f


+ T (r, f (k))− T (r, f) + S(r, f), (14)

N


r,

1

f (k)


≤ kN(r, f) +N


r,

1

f


+ S(r, f) (15)

Lemma 2.2. [9] Consider the expression φ =


F
′′

F
′ − 2F

′

F−1


−


G
′′

G
′ − 2G

′

G−1


, where F and

G are two non-constant meromorphic functions. If F and G share 1 IM and φ ̸≡ 0, then

N
1)
E


r,

1

F − 1


≤ N(r,φ) + S(r, F ) + S(r,G) (16)

Lemma 2.3. [7] Suppose f(z) is a transcendental meromorphic function of zero order,
and let q and η be two non-zero complex constants. Then

T (r, f(qz + η)) = T (r, f(z)) + S(r, f),

N(r,∞; f(qz + η)) ≤ N(r,∞; f(z)) + S(r, f),

N(r, 0; f(qz + η)) ≤ N(r, 0; f(z)) + S(r, f),

N(r,∞; f(qz + η)) ≤ N(r,∞; f(z)) + S(r, f),

N(r, 0; f(qz + η)) ≤ N(r, 0; f(z)) + S(r, f)

Lemma 2.4. [3] Suppose f(z) is a meromorphic function and Ψ(z, f) is a dierential-
dierence polynomial in f . Then

m


r,

Ψ(z, f)

fd∗(Ψ)


≤ (d(Ψ)− d∗(Ψ))m(r, f) + S(r, f) (17)

Lemma 2.5. [3] Consider f(z) as a meromorphic function and Ψ(z, f) as a dierential-
dierence polynomial in f . Then

m


r,

Ψ(z, f)

fd(Ψ)


≤ (d(Ψ)− d∗(Ψ))m


r,

1

f


+ S(r, f) (18)

Lemma 2.6. [3]Consider f(z) as a meromorphic function and Ψ(z, f) as a dierential-
dierence polynomial in f . Then

N(r,Ψ(z, f)) ≤ d(Ψ)N(r, f) +Q∗N(r, f) + S(r, f) (19)

Lemma 2.7. [3] Consider f(z) as a meromorphic function and a dierential-dierence
polynomial Ψ(z, f) in f . Then

N


r,

Ψ(z, f)

fd(Ψ)


≤ Q∗


N(r, f) +N


r,

1

f


+ (d(Ψ)− d∗(Ψ))N


r,

1

f


+ S(r, f) (20)
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Lemma 2.8. [3]Consider f(z) as a meromorphic function and a dierential-dierence
polynomial Ψ(z, f) in f . Then

N


r,

Ψ(z, f)

fd∗(Ψ)


≤ (d(Ψ)− d∗(Ψ))N (r, f) +Q∗


N(r, f) +N


r,

1

f


+ S(r, f) (21)

.

Lemma 2.9. [3] Consider f(z) as a meromorphic function and a dierential-dierence
polynomial Ψ(z, f) in f . Then

T (r,Ψ(z, f)) ≤ d(Ψ)T (r, f) +Q∗N(r, f) + S(r, f), (22)

where Q∗ = max
0≤i≤k,λ∈I

λi,1 + 2λi,2 + +mλi,m.

Lemma 2.10. [3] Consider f(z) as a meromorphic function and a dierential-dierence
polynomial Ψ(z, f) in f . If Ψ(z, f) ̸≡ 0, then we have

N


r,

1

Ψ(z, f)


≤ T (r,Ψ(z, f))− T (r, fd(Ψ)) + (d(Ψ)− d∗(Ψ))m


r,

1

f



+N


r,

1

fd(Ψ)


+ S(r, f),

(23)

N


r,

1

Ψ(z, f)


≤ Q∗N(r, f) + (d(Ψ)− d∗(Ψ))m


r,

1

f


+N


r,

1

fd(Ψ)


+ S(r, f), (24)

where Q∗ = max0≤i≤k,λ∈I λi,1 + 2λi,2 + +mλi,m.

Lemma 2.11. [3] Consider f(z) as a meromorphic function and a dierential-dierence
polynomial Ψ(z, f) in f of degree d and let Q∗ = λ0,1 + 2λ0,2 + +mλ0,m. Then

T (r,Ψ(z, f)) = O(T (r, f)), S(r,Ψ(z, f)) = S(r, f)

Lemma 2.12. [3] Consider f and g a non constant meromorphic functions

i) if f and g share (0, 1), then

NL


r,

1

f − 1


≤ N (r, f) +N


r,

1

f


+ S(r), (25)

Here, as r approaches innity, S(r) = o(T (r)), where T (r) = maxT (r, f), T (r, g).
ii) if f and g share (1, 1), then

2NL


r,

1

g − 1


+ 2NL


r,

1

f − 1


−Nf≥2


r,

1

g − 1


+N

(2
E


r,

1

f − 1



≤ N


r,

1

g − 1


−N


r,

1

g − 1




(26)

3. Proof of Main Results

Proof of Theorem 1.1. Consider F = f
a

and G = Ψ(z,f)
a

. Then F − 1 = f−a
a

and

G− 1 = Ψ(z,f)−a
a

.

Given that f(z) and Ψ(z, f) share (a, l), we can conclude that F and G share (1, l)
except at the zeros and poles of a. Additionally, observe that

N(r, F ) = N(r, f),

N(r,G) = N(r,Ψ(z, f) = N(r, f) + s(r, f)
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Dene,

φ =


F

′′

F ′ − 2F
′

F − 1


−


G

′′

G′ − 2G
′

G− 1


, (27)

Claim φ = 0,
suppose on the contrary that φ ̸= 0. Theerefore from (27), we have

m(r, f) = S(r, f)

By the Nevanlinna Second fundemental theoerm of, we have

T (r,G) + T (r, F ) ≤ N


r,

1

F


+ 2N(r, f) +N


r,

1

G


+N


r,

1

F − 1



+N


r,

1

G− 1


−N0


r,

1

F ′


−N0


r,

1

G′


+ S(r, f)

(28)

N0


r, 1

F
′


represents the counting function of zeros of F

′
that are distinct from the zeros

of F (F − 1). Similarly N0


r, 1

G
′


is dened.

Case 1. From (28), when l ≥ 1, we have

N
1)
E


r,

1

F − 1


≤ N


r,

1

φ


+ S(r, f),≤ N (r,φ) + S(r, f)

≤ N (2


r,

1

F


+N (r, F ) +N (2


r,

1

G


+NL


r,

1

F − 1



+NL


r,

1

G− 1


+N0


r,

1

F ′


+N0


r,

1

G′


+ S(r, f),

and so,

N


r,

1

G− 1


+N


r,

1

F − 1


= N

1)
E


r,

1

F − 1


+N

(2
E


r,

1

F − 1


+NL


r,

1

F − 1



+N


r,

1

G− 1


+NL


r,

1

G− 1


+ S (r, f) ,

≤ N (2


r,

1

F


+N (r, f) + 2NL


r,

1

F − 1


+N (2


r,

1

G



+ 2NL


r,

1

G− 1


+N0


r,

1

F ′


+N0


r,

1

G′



+N
(2
E


r,

1

F − 1


+N


r,

1

G− 1


+ S(r, f)

(29)

Subcase 1.1. When l = 1, we have,

NL


r,

1

F − 1


≤ 1

2
N


r, 1F

′ F ̸= 0

≤ 1

2
N


r,

1

F


+

1

2
N (r, F ) , (30)

Here, N

r, 1F

′ F ̸= 0

represents the zeros of F

′
excluding those of F . Combining (26)

and (30), we obtain

2NL


r,

1

F − 1


+N

(2
E


r,

1

F − 1


+ 2NL


r,

1

G− 1


+N


r,

1

G− 1



≤ N


r,

1

G− 1


+

1

2


N


r,

1

F


+N (r, F )


+ S(r, f)

(31)
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Thus, from (31) and (30), we have

N


r,

1

F − 1


+N


r,

1

G− 1


≤ N (2


r,

1

F


+N (r, f) +N (2


r,

1

G


+

1

2
N (r, f)

+ T (r,G) +N0


r,

1

F ′


+

1

2
N


r,

1

f


+N0


r,

1

G′



+ S(r, f)

(32)

From (28), (32), and using (24), we have

T (r, F ) ≤ 7

2
N (r, f) +N


r,

1

G


+

5

2
N


r,

1

f


+ S(r, f),

T (r, f) ≤

(1−Θ (∞, f))


Q∗ +

7

2


+ (1−Θ (0, f))

5

2
+ (1− δ (0, f))d(Ψ) + (d(Ψ)− d∗(Ψ))



T (r, f) + S(r, f),

Θ (∞, f)


Q∗ +

7

2


+Θ (0, f)

5

2
+ δ (0, f) d(Ψ) ≤ Q∗ + 2d(Ψ)− d∗(Ψ) + 5,

This contradicts the assertion in (8).

Subcase 1.2. For l ≥ 2, under these circumstances, we have

2NL


r,

1

F − 1


+ 2NL


r,

1

G− 1


+N

(2
E


r,

1

F − 1


+N


r,

1

G− 1



≤ N


r,

1

G− 1


+ S(r, f)

Derived from (29), we acquire,

N


r,

1

F − 1


+N


r,

1

G− 1


≤ N (r, f) +N (2


r,

1

G


+N


r,

1

G− 1


+N (2


r,

1

F



+N0


r,

1

G′


+N0


r,

1

G′



≤ N (r, f) +N (2


r,

1

G


+N (2


r,

1

F


+ T (r,G)

+N0


r,

1

G′


+N0


r,

1

F ′


+ S(r, f)

(33)

Now from (28), (24) and (33), we obtain

T (r, F ) ≤ 3N (r, f) + 2N


r,

1

F


+N


r,

1

G


+ S(r, f)

≤ (Q∗ + 3)N (r, f) + 2N


r,

1

f


+N


r,

1

f


d(Ψ) +m


r,

1

f


(d(Ψ)− d∗(Ψ))

+ S(r, f),

T (r, f) ≤ [(1−Θ (∞, f)) (Q∗ + 3) + 2(1−Θ (0, f)) + (1− δ (0, f))d(Ψ) + (d(Ψ)− d∗(Ψ))]

T (r, f) + S(r, f),

Θ (∞, f) (Q∗ + 3) + 2Θ (0, f) + δ (0, f) d(Ψ) ≤ 2d(Ψ) +Q∗ − d∗(Ψ) + 4,

This contradicts the assertion in (7).

Case 2. In the case where l = 0, we then have:

N
1)
E


r,

1

F − 1


= N

1)
E


r,

1

G− 1


+S(r, f), N

(2
E


r,

1

G− 1


= N

(2
E


r,

1

F − 1


+S(r, f)
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And also, from (3.2), we have

N


r,

1

F − 1


+N


r,

1

G− 1


≤ N

1)
E


r,

1

F − 1


+N

(2
E


r,

1

F − 1


+NL


r,

1

F − 1



+NL


r,

1

G− 1


+N


r,

1

G− 1


+ S(r, f),

N


r,

1

G− 1


+N


r,

1

F − 1


≤ N (r, F ) +N

1)
E


r,

1

F − 1


+N

(2
E


r,

1

F − 1



+NL


r,

1

F − 1


+NL


r,

1

G− 1


+N


r,

1

G− 1



+ S(r, f)

(34)

From (25), (26), (28), and (8), we get

T (r,G) + T (r, F ) ≤ 2N (r, f) +N


r,

1

G


+N


r,

1

F


+N


r,

1

F − 1


+N


r,

1

G− 1



−

N0


r,

1

F ′


+N0


r,

1

G′


+ S(r, f),

T (r, F ) ≤ 4N


r,

1

f


+ 6N (r, f) + 2N


r,

1

G


+ S(r, f),

T (r, f) ≤ [(1−Θ(∞, f)) (2Q∗ + 6) + (1−Θ(0, f)) 4 + (1− δ(0, f)) 2d(Ψ) + 2 (d(Ψ)− d∗(Ψ))]

T (r, f) + S(r, f)

We obtain,

Θ(∞, f) (2Q∗ + 6) +Θ(0, f)4 + δ(0, f)2d(Ψ) ≤ 4d(Ψ) + 2Q∗ − 2d∗(Ψ) + 9

This contradicts the assertion in (9).

This conrms the assertion, demonstrating that φ ≡ 0. Thus, according to (27) , we
deduce that

G
′′

G′ − 2G
′

G− 1
=

F
′′

F ′ − 2F
′

F − 1
,

so on integrating twice, we obtain

1

F − 1
=

A
G− 1

+ B (35)

A ̸= 0 and B are constant.

In this context, three possible cases can emerge:
Subcase 1.1. When B ̸= 0,−1, from (35), we get

F − 1

B + 1− BF =
G− 1

A , N


r,

1

F − B+1
B


= N (r,G) 

Under these conditions, the Nevanlinna Second fundamental theorem provides:

T (r, f) = T (r, F ) + S(r, f),

≤ N


r,

1

F


+N (r, F ) +N


r,

1

F − D+1
D


+ S(r, f),

≤ [(1−Θ(0, f)) + 2 (1−Θ(∞, f))]T (r, f) + S(r, f),

Θ(0, f) + 2Θ(∞, f) ≤ 2

This contradicts the assertion in (7), (8) and (9).
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Subcase 1.2. Assuming B = 0, according to (35), we get:

G = AF − (A− 1)  (36)

Our assertion is that A = 1. Suppose A ̸= 1. Then, based on (36), we obtain:

N (r,G) = N


r,

1

F − A−1
A




Using the Nevanlinna second fundamental theorem and (24), we obtain

T (r, f) = T (r, F ) + S(r, f)

≤ N


r,

1

F


+N (r, F ) +N


r,

1

F − D+1
D


+ S(r, f),

≤ [(1−Θ(∞, f)) (Q∗ + 1)−Θ(0, f) + (1− δ(0, f)) d(Ψ) + d(Ψ)

− d∗(Ψ) + 1]T (r, f) + S(r, f),

Θ(∞, f)(Q∗ + 1) +Θ(0, f) + δ(0, f)d(Ψ) ≤ 2d(Ψ) +Q∗ − d∗(Ψ) + 1

Thus A = 1, and in this case, from (3.11)

F = G,

and so f(z) = Ψ(z, f)

Subcase 1.3. Suppose B = −1 from (35),

1

F − 1
=

A
G− 1

− 1, (37)

=⇒ F =
A

A−G+ 1
 (38)

If A ̸= −1

N


r,

1

F − A
A+1


= N


r,

1

G




Applying the same reasoning as in subcase 1.2 leads to a contradiction. Hence, A = −1.

From (38), we have:

GF ≡ 1,

ie, f(z) [Ψ(z, f)] ≡ a2 (39)

Therefore, under these conditions, we have N (r, f) +N

r, 1

f


= S(r, f),

Based on (38) and (39), along with the rst fundamental theorem,

(1 + d(Ψ))T (r, f) = T


r,

1

fd(Ψ)+1


,

≤ m


r,

Ψ(z, f)

fd(Ψ)


+N


r,

Ψ(z, f)

fd(Ψ)


+ S(r, f),

≤ T (r, f) (d(Ψ)− d∗(Ψ)) + S(r, f),

(1 + d∗(Ψ))T (r, f) ≤ S(r, f)

Which is a contradiction.
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Proof of theorem 1.2.

F =
Ψ (z, f)

a
G =

p(f)

a
, (40)

Given that p(f) and Ψ(z, f) share a IM, it implies that F and G also share 1 IM.
Now, utilizing lemmaLemma 2.11 and from (1), we can deduce

T (r,G) ≤ T (r, f) + S(r, f), (41)

N(r, F ) = N(r,Ψ(z, f) = N(r, f) + S(r, f),

N(r,G) = N(r, f) + S(r, f),
(42)

N
1)
E


r,

1

F − 1


= N

1)
E


r,

1

G− 1


+ S(r, f), (43)

N
(2
E


r,

1

F − 1


= N

(2
E


r,

1

G− 1


+ S(r, f), (44)

NL


r,

1

F − 1


≤ N


r,

1

F


+N(r, F ) + S(r, f), (45)

N


r,

1

F − 1


= N


r,

1

G− 1


+ S(r, f)

≤ N
1)
E


r,

1

F − 1


+N

(2
E


r,

1

F − 1


+NL


r,

1

F − 1



+NL


r,

1

G− 1


+ S(r, f)

(46)

Suppose that φ ̸≡ 0. Then we have,

N(r,φ) ≤ N(2


r,

1

F


+N(r,G) +N(2


r,

1

G


+NL


r,

1

F − 1



+NL


r,

1

G− 1


+N0


r,

1

F ′


+N0


r,

1

G′


,

(47)

Here, N0


r, 1

F
′


represents the counting function for the zeros of F

′
excluding those

shared with F and F − 1. Similarly, N0


r, 1

G
′


is dened similarly.

Applying the second fundamental theorem yields

T (r,G) + T (r, F ) ≤ N(r, F ) +N(r,G) +N


r,

1

F


+N


r,

1

G


+N


r,

1

F − 1



+N


r,

1

G− 1


−N0


r,

1

F ′


−N0


r,

1

G′


+ S(r, f)

(48)

Given that F and G share 1 IM, we deduce from (46)

N


r,

1

F − 1


+N


r,

1

G− 1


= 2N

1)
E


r,

1

F − 1


+ 2NL


r,

1

F − 1



+ 2NL


r,

1

G− 1


+ 2N

(2
E


r,

1

F − 1




(49)

From this, (16) and (47), we get

N


r,

1

F − 1


+N


r,

1

G− 1


≤ N(2


r,

1

F


+N(r,G) +N(2


r,

1

G


+N0


r,

1

F ′



+ 3NL


r,

1

F − 1


+ 3NL


r,

1

G− 1


+N

1)
E


r,

1

F − 1



+ 2N
(2
E


r,

1

F − 1


+N0


r,

1

G′


+ S(r, f)

(50)



EJMAA-2024/12(2)UNIQUENESS OF GENERAL DIFFERENCE DIFFERENTIAL POLYNOMIALS..13

We now note that

NL


r,

1

F − 1


+2N

(2
E


r,

1

F − 1


+ 2NL


r,

1

G− 1


+N

1)
E


r,

1

F − 1



≤ N


r,

1

G− 1


≤ T (r,G) +O(1)

(51)

Combining (50) and (51) yields

N


r,

1

G− 1


+N


r,

1

F − 1


≤N(2


r,

1

F


+N(2


r,

1

G


+N(r,G) + 2NL


r,

1

F − 1



+NL


r,

1

G− 1


+ T (r,G) +N0


r,

1

F ′



+N0


r,

1

G′


+ S(r, f)

(52)

Employing (52) within (48) and (42), results in

T (r, F ) ≤ 3N(r,G) +N


r,

1

F


+N


r,

1

G


+ 2NL


r,

1

F − 1


+NL


r,

1

G− 1



+ S(r, f)

(53)

Utilizing (53) and (23) yields

T (r,Ψ(z, f)) ≤ N


r,

1

Ψ(z, f)


+ 3N(r,G) +N


r,

1

f


+ 2NL


r,

1

F − 1


+NL


r,

1

G− 1



+ S(r, f),

T (r, f)d(Ψ) ≤nN


r,

1

f


+ 3N(r, f) + (d(Ψ)−m


r,

1

f


d∗(Ψ)) +N


r,

1

fd(Ψ)



+ 2NL


r,

1

F − 1


+NL


r,

1

G− 1


+ S(r, f)

(54)

From (15), (23), and (40), we get

2NL


r,

1

F − 1


+NL


r,

1

G− 1


≤ 2N


r,

1

F ′


+N


r,

1

G′



≤ N(r, f)(2Q∗ + 3) + (2d(Ψ) + n)N


r,

1

f



+ 2m


r,

1

f


(d(Ψ)− d∗(Ψ)) + S(r, f)

(55)

Again using (55) in (54), we get

T (r, f)d(Ψ) ≤ nN


r,

1

f


+ 3N(r,G) + (d(Ψ)− d∗(Ψ))m


r,

1

f


+N


r,

1

fd(Ψ)



+N(r, f)(2Q∗ + 3) +N


r,

1

f


(2d(Ψ) + n)

+ 2(d(Ψ)− d∗(Ψ))m


r,

1

f


+ S(r, f),

T (r, f)(3d∗(Ψ)− 2d(Ψ)) ≤ N(r, f)(2Q∗ + 6) +N


r,

1

f


(3d∗(Ψ) + 2n) + S(r, f)

Therefore, we obtain

Θ(∞, f)(2Q∗ + 6) + δ(0, f)(3d∗(Ψ) + 2n) ≤ 2(Q∗ + n+ d(Ψ)) + 6, (56)

which contradicts (10).
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Thus, φ = 0
Integrating φ results in

1

G− 1
=

A
F − 1

+ B, (57)

Here, (A ̸= 0) and B are constants. Consequently,

G =
(B + 1)F + (A− B − 1)

BF + (A− B) , F =
(B −A)G+ (A− B − 1)

BG− (B + 1)
 (58)

We examine the following three cases.
Case 1.Suppose B ̸= 0,−1. According to (58), we have

N


r,

1

G− (B+1)
B


= N(r, F ) (59)

From this, along with the second fundamental theorem, we have

T (r,G) ≤ N


r,

1

G− (B+1)
B


+N(r,G) +N


r,

1

G


+ S(r, f),

nT (r, f) ≤ (2Q∗ + 6)N(r, f) + (3d∗(Ψ) + 2n)N


r,

1

f


+ S(r, f),

Therefore, we have

Θ(∞, f)(2Q∗ + 6) + δ(0, f)(3d∗(Ψ) + 2n) ≤ 3d∗(Ψ) + 2Q∗ + 7,

which contradicts (10).
Case 2.If B = 0, then according to (58), we have

G =
F + (A− 1)

A , F = AG− (A− 1) (60)

Our assertion is that A = 1. Assuming A ̸= 1, then from (60), we obtain

N


r,

1

F


= N


r,

1

G− (A−1)
A


 (61)

With this and the Nevanlinna second fundamental theorem, we obtain

T (r,G) ≤ N


r,

1

G


+N


r,

1

G− (A−1)
A


+N(r,G) + S(r, f),

≤ N(r, f) +N


r,

1

f


+N


r,

1

Ψ(z, f)


+ S(r, f),

[n− d(Ψ) + d∗(Ψ)]T (r, f) ≤ (Q∗ + 1)N(r, f) + (n+ d(Ψ))N


r,

1

f


+ S(r, f)

So, we have

(Q∗ + 1)Θ(∞, f) + (n+ d(Ψ))δ(0, f) ≤ Q∗ + 2d(Ψ)− d∗(Ψ) + 1,

this contradicts (10).
Hence, A = 1 According to (60), we have G ≡ F
Thus, p(f(z)) ≡ Ψ(z, f)
Case 3. If B = −1, then according to (58), we have

G =
A

−F +A+ 1
, F =

(1 +A)G−A
G

 (62)

In case A ̸= −1, we deduce from (62) that

N


r,

1

G− A
(A+1)


= N


r,

1

F


 (63)



EJMAA-2024/12(2)UNIQUENESS OF GENERAL DIFFERENCE DIFFERENTIAL POLYNOMIALS..15

Using the same reasoning as in case 2, we arrive at a contradiction.
Hence, A = −1
From (62), we obtain

GF = 1 (64)

That is,

p(f)Ψ(z, f) = a2 (65)

From (65), we have

N


r,

1

f


+N(r, f) = S(r, f) (66)

Employing (62), (65), Lemma Lemma 2.10, and the Nevanlinna rst fundamental theorem,
we derive

T (r, f)(d(Ψ) + n) = T


r,

1

fd(Ψ)+n



= T


r,

Ψ(z, f)

fd(Ψ)a2


+ S(r, f)

≤ T


r,

1

f


(d(Ψ)− d∗(Ψ)) + S(r, f)

We have,

(d∗(Ψ) + n)T (r, f) ≤ S(r, f), (67)

This leads to a contradiction.
Thus, the proof of Theorem 1.2 is complete.

Proof of Theorem 1.3. Consider the denitions of F and G as given in (40).
From the theorem’s hypothesis, it follows that F and G share 1 CM. Hence,

NL


r,

1

F − 1


= NL


r,

1

G− 1


= 0 (68)

Continuing similarly to the Proof of Theorem 1.1, we arrive at (54), which is:

T (r, f)d(Ψ) ≤nN


r,

1

f


+ 3N(r,G) +m


r,

1

f


(d(Ψ)− d∗(Ψ)) +N


r,

1

fd(Ψ)



+ 2NL


r,

1

F − 1


+NL


r,

1

G− 1


+ S(r, f)

Using (68) in (54), we get

T (r, f)d(Ψ) ≤N


r,

1

fd(Ψ)


+ 3N(r,G) +m


r,

1

f


(d(Ψ)− d∗(Ψ)) + nN


r,

1

f



+ S(r, f)

≤ 3N(r, f) + (d(Ψ)− d∗(Ψ))


T (r, f)−N


r,

1

f


+ d(Ψ)N


r,

1

f



+ nN


r,

1

f


+ S(r, f),

T (r, f)d∗(Ψ) ≤ (d∗(Ψ) + n)N


r,

1

f


+ 3N(r, f) + S(r, f)

Thus, we have

3Θ(∞, f) + δ(0, f)(d∗(Ψ) + n) ≤ 3 + n,

This contradicts (11).
Therefore, φ ≡ 0. Following a similar approach to the Proof of theorem 1.2, we establish
Theorem 1.3.
Thus, the proof of Theorem 1.3 is concluded.
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3.1. Proof of Theorem 1.4. Given the hypothesis that f(z) is a non-constant entire
function, we can employ N(r, f) = S(r, f) in the Proof of Theorem 1.2 to derive the proof
of Theorem 1.4.

3.2. Proof of Theorem 1.5. Given the hypothesis that f(z) is a non-constant entire
function, we can utilize N(r, f) = S(r, f) in the Proof of Theorem 1.3 to derive the proof
of Theorem 1.5.

Open Question 1.1. Considering the non-constant meromorphic function fp
1 p(f1),

where f1 = z− c for some c ∈ C, along with the dierential-dierence polynomial Ψ(z, f),
what implications arise if they share a value a with nite weight?
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