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SOME GROWTH PROPERTIES OF ANALYTIC FUNCTIONS

RELATING TO (α, β, γ)-NEVANLINNA ORDER AND

(α, β, γ)-NEVANLINNA TYPE IN THE UNIT DISC

TANMAY BISWAS, CHINMAY BISWAS, SARMILA BHATTACHARYYA, SUSMITA BISWAS

Abstract. Growth analysis of analytic functions is very important part of

research in the field of complex analysis and many researchers are involved
in this area during past decades. Collecting ideas from Heittokangas et al.

(Meromorphic functions of finite φ-order and linear q-difference equations, J.

Difference Equ. Appl., 27(9) (2021), 1280-1309) and Beläıdi et al. (Study of
complex oscillation of solutions of a second order linear differential equation

with entire coefficients of (α, β, γ)-order, WSEAS Trans. Math., 21(2022),

361-370), here in this paper, we have defined the (α, β, γ)-Nevanlinna order
and (α, β, γ)-Nevanlinna type of an analytic function f in the unit disc U .

We have also established some growth properties of the composition of two

analytic functions in the unit disc on the basis of their (α, β, γ)-Nevanlinna
order, (α, β, γ)-Nevanlinna lower order, (α, β, γ)-Nevanlinna type and (α, β, γ)-

Nevanlinna weak type as compared to the growth of their corresponding left

and right factors, where α, β, γ are continuous non-negative functions defined
on (−∞,+∞).

1. Introduction

A function f , analytic in the unit disc U = {z : |z| < 1} is said to have
finite Nevanlinna order [8] if there exists a number µ such that the Nevanlinna
characteristic function of f denoted by

T (r, f) =
1

2π

2π∫
0

log+
∣∣f (

reiθ
)∣∣ dθ
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satisfies Tf (r) < (1− r)
−µ

for all r in 0 < r0 (µ) < r < 1. The greatest lower bound
of all such numbers µ is called the Nevanlinna order of f . Thus the Nevanlinna
order ρ(f) of f is given by

ρ(f) = lim sup
r→1

log Tf (r)

− log (1− r)
.

Similarly, the Nevanlinna lower order λ(f) of f is given by

λ(f) = lim inf
r→1

log Tf (r)

− log (1− r)
.

However during the last several years many authors have investigated about
Nevanlinna theory in the field of unit disc in different directions, e.g., [2, 3, 10, 11,
12].

Now, let L be a class of continuous non-negative functions α defined on
(−∞,+∞) such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x0 ≤
x → +∞. We say that α ∈ L1, if α ∈ L and α(a + b) ≤ α(a) + α(b) + c for
all a, b ≥ R0 and fixed c ∈ (0,+∞). Further we say that α ∈ L2, if α ∈ L
and α(x + O(1)) = (1 + o(1))α(x) as x → +∞. Finally, α ∈ L3, if α ∈ L and
α(a+ b) ≤ α(a) + α(b) for all a, b ≥ R0, i.e., α is subadditive. Clearly L3 ⊂ L1.

Particularly, when α ∈ L3, then one can easily verify that α(mr) ≤ mα(r),
m ≥ 2 is an integer. Up to a normalization, subadditivity is implied by concavity.
Indeed, if α(r) is concave on [0,+∞) and satisfies α(0) ≥ 0, then for t ∈ [0, 1],

α(tx) = α(tx+ (1− t) · 0)
≥ tα(x) + (1− t)α(0) ≥ tα(x),

so that by choosing t = a
a+b or t = b

a+b ,

α(a+ b) =
a

a+ b
α(a+ b) +

b

a+ b
α(a+ b)

≤ α

(
a

a+ b
(a+ b)

)
+ α

(
b

a+ b
(a+ b)

)
= α(a) + α(b), a, b ≥ 0.

As a non-decreasing, subadditive and unbounded function, α(r) satisfies

α(r) ≤ α(r +R0) ≤ α(r) + α(R0)

for any R0 ≥ 0. This yields that α(r) ∼ α(r + R0) as r → 1. Throughout the
present paper we take α, α1, α2, α3 ∈ L1, β ∈ L2, γ ∈ L3.

Heittokangas et al. [7] have introduced a new concept of φ-order of en-
tire and meromorphic functions considering φ as subadditive function. Later on
Beläıdi et al. [4] have extended the above idea and have introduced the definitions
of (α, β, γ)-order and (α, β, γ)-lower order for entire and meromorphic function.
Using these concepts, one may define the (α, β, γ)-Nevanlinna order and (α, β, γ)-
Nevanlinna lower order of an analytic function f in the unit disc U in the following
ways:
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Definition 1.1. The (α, β, γ)-Nevanlinna order denoted by ρ(α,β,γ)[f ] and (α, β, γ)-
Nevanlinna lower order denoted by λ(α,β,γ)[f ] of an analytic function f in the unit
disc U are defined as:

ρ(α,β,γ)[f ] = lim sup
r→1

α(log T (r, f))

β
(
log(γ( 1

1−r ))
)

and λ(α,β,γ)[f ] = lim inf
r→1

α(log T (r, f))

β
(
log(γ( 1

1−r ))
) .

Beläıdi et al. [5] have also introduced the definitions of another growth
indicators, called (α, β, γ)-type and (α, β, γ)-lower type for entire and meromor-
phic functions. Using that concepts, one can define (α, β, γ)-Nevanlinna type and
(α, β, γ)-Nevanlinna lower type of an analytic function f in the unit disc U in the
following way:

Definition 1.2. [5] The (α, β, γ)-Nevanlinna type denoted by σ(α,β,γ)[f ] and (α, β, γ)-
Nevanlinna lower type denoted by σ(α,β,γ)[f ], of an analytic function f in the unit

disc U having finite positive (α, β, γ)-Nevanlinna order
(
0 < ρ(α,β,γ)[f ] < +∞

)
are

defined as:

σ(α,β,γ)[f ] = lim sup
r→1

exp(α(log T (r, f)))(
exp

(
β
(
log(γ( 1

1−r ))
)))ρ(α,β,γ)[f ]

and σ(α,β,γ)[f ] = lim inf
r→1

exp(α(log T (r, f)))(
exp

(
β
(
log(γ( 1

1−r ))
)))ρ(α,β,γ)[f ]

.

It is obvious that 0 ≤ σ(α,β,γ)[f ] ≤ σ(α,β,γ)[f ] ≤ +∞.

Analogously, to determine the relative growth of two analytic functions hav-
ing same non-zero finite (α, β, γ) -Nevanlinna lower type, one can introduce the defi-
nitions of (α, β, γ)-Nevanlinna weak type and (α, β, γ)-Nevanlinna upper weak type
of a analytic function f in the unit disc U having finite positive (α, β, γ)-Nevanlinna
lower order, which are as follows:

Definition 1.3. The (α, β, γ)-Nevanlinna weak type denoted by τ(α,β,γ)[f ] and
(α, β, γ)-Nevanlinna upper weak type denoted by τ (α,β,γ)[f ] of an analytic func-
tion f in the unit disc U having finite positive (α, β, γ)-Nevanlinna lower order(
0 < λ(α,β,γ)[f ] < +∞

)
are defined as:

τ (α,β,γ)[f ] = lim sup
r→1

exp(α(log T (r, f)))(
exp

(
β
(
log(γ( 1

1−r ))
)))λ(α,β,γ)[f ]

and τ(α,β,γ)[f ] = lim inf
r→1

exp(α(log T (r, f)))(
exp

(
β
(
log(γ( 1

1−r ))
)))λ(α,β,γ)[f ]

.

It is obvious that 0 ≤ τ(α,β,γ)[f ] ≤ τ (α,β,γ)[f ] ≤ +∞.
Here, in this paper, our aim is to investigate some growth properties relating

to the composition of two analytic functions in the unit disc U on the basis of
(α, β, γ)-Nevanlinna order, (α, β, γ)-Nevanlinna type and (α, β, γ)-Nevanlinna weak
type as compared to the growth of their corresponding left and right factors. We
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do not explain the standard definitions and notations in the theory of analytic
functions as those are available in [1, 6, 8, 9].

2. Main results

In this section, the main results of the paper are presented.

Theorem 2.1. Let f and g be two analytic functions in the unit disc U such that
0 < λ(α1,β,γ)[f◦g] ≤ ρ(α1,β,γ)[f◦g] < +∞ and 0 < λ(α2,β,γ)[f ] ≤ ρ(α2,β,γ)[f ] < +∞.
Then

λ(α1,β,γ)[f ◦ g]
ρ(α2,β,γ)[f ]

≤ lim inf
r→1

α1(log T (r, f ◦ g))
α2(log T (r, f))

≤ min

{
λ(α1,β,γ)[f ◦ g]
λ(α2,β,γ)[f ]

,
ρ(α1,β,γ)[f ◦ g]
ρ(α2,β,γ)[f ]

}
≤ max

{
λ(α1,β,γ)[f ◦ g]
λ(α2,β,γ)[f ]

,
ρ(α1,β,γ)[f ◦ g]
ρ(α2,β,γ)[f ]

}
≤ lim sup

r→1

α1(log T (r, f ◦ g))
α2(log T (r, f))

≤
ρ(α1,β,γ)[f ◦ g]
λ(α2,β,γ)[f ]

.

Proof. From the definitions of λ(α1,β,γ)[f◦g], ρ(α1,β,γ)[f◦g], λ(α2,β,γ)[f ] and ρ(α2,β,γ)[f ],
we have for arbitrary positive ε and for all sufficiently large values of r (< 1) such
that

α1 (log T (r, f ◦ g)) ⩾
(
λ(α1,β,γ)[f ◦ g]− ε

)
β(log(γ(

1

1− r
))), (1)

α1 (log T (r, f ◦ g)) ≤
(
ρ(α1,β,γ)[f ◦ g] + ε

)
β(log(γ(

1

1− r
))), (2)

α2 (log T (r, f)) ⩾
(
λ(α2,β,γ)[f ]− ε

)
β(log(γ(

1

1− r
))) (3)

and α2 (log T (r, f)) ≤
(
ρ(α2,β,γ)[f ] + ε

)
β(log(γ(

1

1− r
))). (4)

Again for a sequence of values of r tending to 1,

α1 (log T (r, f ◦ g)) ≤
(
λ(α1,β,γ)[f ◦ g] + ε

)
β(log(γ(

1

1− r
))), (5)

α1 (log T (r, f ◦ g)) ⩾
(
ρ(α1,β,γ)[f ◦ g]− ε

)
β(log(γ(

1

1− r
))), (6)

α2 (log T (r, f)) ≤
(
λ(α2,β,γ)[f ] + ε

)
β(log(γ(

1

1− r
))) (7)

and α2 (log T (r, f)) ⩾
(
ρ(α2,β,γ)[f ]− ε

)
β(log(γ(

1

1− r
))). (8)

Now from (1) and (4) it follows for all sufficiently large values of r (< 1), that

α1 (log T (r, f ◦ g))
α2 (log T (r, f))

⩾
λ(α1,β,γ)[f ◦ g]− ε

ρ(α2,β,γ)[f ] + ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

α1 (log T (r, f ◦ g))
α2 (log T (r, f))

⩾
λ(α1,β,γ)[f ◦ g]
ρ(α2,β,γ)[f ]

. (9)
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Combining (5) and (3) , we have for a sequence of values of r tending to 1 that

α1 (log T (r, f ◦ g))
α2 (log T (r, f))

≤
λ(α1,β,γ)[f ◦ g] + ε

λ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary it follows that

lim inf
r→1

α1 (log T (r, f ◦ g))
α2 (log T (r, f))

≤
λ(α1,β,γ)[f ◦ g]
λ(α2,β,γ)[f ]

. (10)

Again from (1) and (7), for a sequence of values of r tending to 1, we get

α1 (log T (r, f ◦ g))
α2 (log T (r, f))

≥
λ(α1,β,γ)[f ◦ g]− ε

λ(α2,β,γ)[f ] + ε
.

As ε (> 0) is arbitrary, we get from above that

lim sup
r→1

α1 (log T (r, f ◦ g))
α2 (log T (r, f))

≥
λ(α1,β,γ)[f ◦ g]
λ(α2,β,γ)[f ]

. (11)

Now, it follows from (3) and (2) , for all sufficiently large values of r (< 1) that

α1 (log T (r, f ◦ g))
α2 (log T (r, f))

≤
ρ(α1,β,γ)[f ◦ g] + ε

λ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→1

α1 (log T (r, f ◦ g))
α2 (log T (r, f))

≤
ρ(α1,β,γ)[f ◦ g]
λ(α2,β,γ)[f ]

. (12)

Now from (2) and (8) , it follows for a sequence of values of r tending to 1, that

α1 (log T (r, f ◦ g))
α2 (log T (r, f))

≤
ρ(α1,β,γ)[f ◦ g] + ε

ρ(α2,β,γ)[f ]− ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

α1 (log T (r, f ◦ g))
α2 (log T (r, f))

≤
ρ(α1,β,γ)[f ◦ g]
ρ(α2,β,γ)[f ]

. (13)

So combining (4) and (6) , we get for a sequence of values of r tending to 1, that

α1 (log T (r, f ◦ g))
α2 (log T (r, f))

⩾
ρ(α1,β,γ)[f ◦ g]− ε

ρ(α2,β,γ)[f ] + ε
.

Since ε (> 0) is arbitrary, it follows that

lim sup
r→1

α1 (log T (r, f ◦ g))
α2 (log T (r, f))

⩾
ρ(α1,β,γ)[f ◦ g]
ρ(α2,β,γ)[f ]

. (14)

Thus the theorem follows from (9) , (10) , (11), (12) , (13) and (14) . □

Remark 2.1. If we take “0 < λ(α3,β,γ)[g] ≤ ρ(α3,β,γ)[g] < +∞” instead of “0 <
λ(α2,β,γ)[f ] ≤ ρ(α2,β,γ)[f ] < +∞” and other conditions remain same, the conclusion
of Theorem 2.1 remains true with “λ(α3,β,γ)[g]”, “ρ(α3,β,γ)[g]” and “α3 (log T (r, g))”
in replace of “λ(α2,β,γ)[f ]”, “ρ(α2,β,γ)[f ]” and “α2 (log T (r, f))” respectively in the
denominators.
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Theorem 2.2. Let f and g be two non-constant analytic functions in the unit disc
U such that 0 < λ(α,β,γ)[f ] ≤ ρ(α,β,γ)[f ] < +∞ and λ(α,β,γ)[f ◦ g] = +∞. Then

lim
r→1

α(log T (r, f ◦ g))
α(log T (r, f))

= +∞.

Proof. If possible, let the conclusion of the theorem does not hold. Then we can
find a constant ∆ > 0 such that for a sequence of values of r tending to 1,

α(log T (r, f ◦ g)) ≤ ∆ · α(log T (r, f)). (15)

Again from the definition of ρ(α,β,γ)[f ], it follows for all sufficiently large values of
r (< 1) that

α(log T (r, f)) ≤ (ρ(α,β,γ)[f ] + ϵ)β(log(γ(
1

1− r
))). (16)

From (15) and (16), for a sequence of values of r tending to 1,we have

α(log(T (r, f ◦ g))) ≤ ∆(ρ(α,β,γ)[f ] + ϵ)β(log(γ(
1

1− r
))),

i.e.,
α(log T (r, f ◦ g))
β(log(γ( 1

1−r )))
≤ ∆(ρ(α,β,γ)[f ] + ϵ),

i.e., lim inf
r→1

α(log T (r, f ◦ g))
β(log(γ( 1

1−r )))
< +∞,

i.e., λ(α,β,γ)[f ◦ g] < +∞.

This is a contradiction.
Thus the theorem follows. □

Remark 2.2. If we take “ 0 < λ(α,β,γ)[g] ≤ ρ(α,β,γ)[g] < +∞” instead of “ 0 <
λ(α,β,γ)[f ] ≤ ρ(α,β,γ)[f ] < +∞” and other conditions remain same, the conclusion
of Theorem 2.2 remains true with “α(log T (r, g))” in replace of “α(log T (r, f))” in
the denominators.

Remark 2.3. Theorem 2.2 and Remark 2.2 are also valid with “limit superior”
instead of “limit” if “λ(α,β,γ)[f ◦ g] = +∞” is replaced by “ρ(α,β,γ)[f ◦ g] = +∞”
and the other conditions remain the same.

Theorem 2.3. Let f and g be two analytic functions in the unit disc U such that
0 < σ(α1,β,γ)[f ◦ g] ≤ σ(α1,β,γ)[f ◦ g] < +∞, 0 < σ(α2,β,γ)[f ] ≤ σ(α2,β,γ)[f ] < +∞
and ρ(α1,β,γ)[f ◦ g] = ρ(α2,β,γ)[f ]. Then

σ(α1,β,γ)[f ◦ g]
σ(α2,β,γ)[f ]

≤ lim inf
r→1

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

≤ min

{
σ(α1,β,γ)[f ◦ g]
σ(α2,β,γ)[f ]

,
σ(α1,β,γ)[f ◦ g]
σ(α2,β,γ)[f ]

}
≤ max

{
σ(α1,β,γ)[f ◦ g]
σ(α2,β,γ)[f ]

,
σ(α1,β,γ)[f ◦ g]
σ(α2,β,γ)[f ]

}
≤ lim sup

r→1

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

≤
σ(α1,β,γ)[f ◦ g]
σ(α2,β,γ)[f ]

.
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Proof. From the definitions of σ(α2,β,γ)[f ], σ(α2,β,γ)[f ], σ(α1,β,γ)[f◦g] and σ(α1,β,γ)[f◦
g], we have for arbitrary positive ε(> 0) and for all sufficiently large values of r
(< 1) that

exp(α1(log T (r, f ◦ g))) ≤
(
σ(α1,β,γ)[f ◦ g] + ε

)
(exp(β(log(γ(

1

1− r
)))))ρ(α1,β,γ)[f◦g],

(17)

exp(α1(log T (r, f ◦ g))) ≥
(
σ(α1,β,γ)[f ◦ g]− ε

)
(exp(β(log(γ(

1

1− r
)))))ρ(α1,β,γ)[f◦g],

(18)

exp(α2(log T (r, f))) ≤
(
σ(α2,β,γ)[f ] + ε

)
(exp(β(log(γ(

1

1− r
)))))ρ(α2,β,γ)[f ], (19)

exp(α2(log T (r, f))) ≥
(
σ(α2,β,γ)[f ]− ε

)
(exp(β(log(γ(

1

1− r
)))))ρ(α2,β,γ)[f ]. (20)

Again for a sequence of values of r tending to 1, we get that

exp(α1(log T (r, f ◦ g))) ⩾ (σ(α1,β,γ)[f ◦ g]− ε)(exp(β(log(γ(
1

1− r
)))))ρ(α1,β,γ)[f◦g],

(21)

exp(α1(log T (r, f ◦ g))) ≤
(
σ(α1,β,γ)[f ◦ g] + ε

)
(exp(β(log(γ(

1

1− r
)))))ρ(α1,β,γ)[f◦g],

(22)

exp(α2(log T (r, f))) ≤
(
σ(α2,β,γ)[f ] + ε

)
(exp(β(log(γ(

1

1− r
)))))ρ(α2,β,γ)[f ], (23)

exp(α2(log T (r, f))) ≥
(
σ(α2,β,γ)[f ]− ε

)
(exp(β(log(γ(

1

1− r
)))))ρ(α2,β,γ)[f ]. (24)

Now from (18), (19) and the condition ρ(α1,β,γ)[f ◦ g] = ρ(α2,β,γ)[f ], it follows
for all sufficiently large values of r (< 1) that

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

⩾
σ(α1,β,γ)[f ◦ g]− ε

σ(α2,β,γ)[f ] + ε
.

As ε (> 0) is arbitrary, we obtain from above that

lim inf
r→1

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

⩾
σ(α1,β,γ)[f ◦ g]
σ(α2,β,γ)[f ]

. (25)

Combining (22) and (20) and the condition ρ(α1,β,γ)[f ◦ g] = ρ(α2,β,γ)[f ], we get
for a sequence of values of r tending to 1 that

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

≤
σ(α1,β,γ)[f ◦ g] + ε

σ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→1

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

≤
σ(α1,β,γ)[f ◦ g]
σ(α2,β,γ)[f ]

. (26)

Now from (18), (23) and the condition ρ(α1,β,γ)[f ◦ g] = ρ(α2,β,γ)[f ], we obtain
for a sequence of values of r tending to 1, that

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

≥
σ(α1,β,γ)[f ◦ g]− ε

σ(α2,β,γ)[f ] + ε
.

As ε (> 0) is arbitrary, we get from above that

lim sup
r→1

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

≥
σ(α1,β,γ)[f ◦ g]
σ(α2,β,γ)[f ]

. (27)
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In view of the condition ρ(α1,β,γ)[f ◦ g] = ρ(α2,β,γ)[f ], it follows from (20) and
(17) for all sufficiently large values of r (< 1) that

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

≤
σ(α1,β,γ)[f ◦ g] + ε

σ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→1

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

≤
σ(α1,β,γ)[f ◦ g]
σ(α2,β,γ)[f ]

. (28)

Now from (17), (24) and the condition ρ(α1,β,γ)[f ◦ g] = ρ(α2,β,γ)[f ], it follows
for a sequence of values of r tending to 1, that

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

≤
σ(α1,β,γ)[f ◦ g] + ε

σ(α2,β,γ)[f ]− ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

≤
σ(α1,β,γ)[f ◦ g]
σ(α2,β,γ)[f ]

. (29)

So combining (19) and (21) and in view of the condition ρ(α1,β,γ)[f ◦ g] =
ρ(α2,β,γ)[f ], we get for a sequence of values of r tending to 1, that

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

⩾
σ(α1,β,γ)[f ◦ g]− ε

σ(α2,β,γ)[f ] + ε
.

Since ε (> 0) is arbitrary, it follows that

lim sup
r→1

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

⩾
σ(α1,β,γ)[f ◦ g]
σ(α2,β,γ)[f ]

. (30)

Thus the theorem follows from (25) , (26) , (27), (28) , (29) and (30) . □

Remark 2.4. If we take “0 < σ(α3,β,γ)[g] ≤ σ(α3,β,γ)[g] < +∞”and “ρ(α1,β,γ)[f ◦
g] = ρ(α3,β,γ)[g]” instead of “ 0 < σ(α2,β,γ)[f ] ≤ σ(α2,β,γ)[f ] < +∞” and “ρ(α1,β,γ)[f◦
g] = ρ(α2,β,γ)[f ]” and other conditions remain same, the results of Theorem 2.3 re-
main true with “σ(α3,β,γ)[g]”, “σ(α3,β,γ)[g]” and“exp(α3(log T (r, g)))” instead of
“σ(α2,β,γ)[f ]”, “σ(α2,β,γ)[f ]” and “exp(α2(log T (r, f)))” respectively in the denom-
inators.

Remark 2.5. If we take “0 < τ(α2,β,γ)[f ] ≤ τ (α2,β,γ)[f ] < +∞” and “ρ(α1,β,γ)[f ◦
g] = λ(α2,β,γ)[f ]” instead of “ 0 < σ(α2,β,γ)[f ] ≤ σ(α2,β,γ)[f ] < +∞” and “ρ(α1,β,γ)[f◦
g] = ρ(α2,β,γ)[f ]” and other conditions remain same, the results of Theorem 2.3
remain true with “τ (α2,β,γ)[f ]” and “τ(α2,β,γ)[f ]” in place of “σ(α2,β,γ)[f ]” and
“σ(α2,β,γ)[f ]“ respectively in the denominators.

Remark 2.6. If we take “0 < τ(α3,β,γ)[g] ≤ τ (α3,β,γ)[g] < +∞” and “ρ(α1,β,γ)[f ◦
g] = λ(α3,β,γ)[g]” instead of “ 0 < σ(α2,β,γ)[f ] ≤ σ(α2,β,γ)[f ] < +∞” and “ρ(α1,β,γ)[f◦
g] = ρ(α2,β,γ)[f ]” and other conditions remain same, the results of Theorem 2.3 re-
main true with “τ(α3,β,γ)[g]”, “τ (α3,β,γ)[g]” and “exp(α3(log T (r, g)))” in place of
“σ(α2,β,γ)[f ]”, “σ(α2,β,γ)[f ]” and “exp(α2(log T (r, f)))” respectively in the denom-
inators.

Now in the line of Theorem 2.3 , one can easily prove the following theorem
using the notions of (α, β, γ)-Nevanlinna weak type and (α, β, γ)-Nevanlinna upper
weak type and so the proof is omitted.
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Theorem 2.4. Let f and g be two analytic functions in the unit disc U such that
0 < τ(α1,β,γ)[f ◦ g] ≤ τ (α1,β,γ)[f ◦ g] < +∞, 0 < τ(α2,β,γ)[f ] ≤ τ (α2,β,γ)[f ] < +∞
and λ(α1,β,γ)[f ◦ g] = λ(α2,β,γ)[f ]. Then

τ(α1,β,γ)[f ◦ g]
τ (α2,β,γ)[f ]

≤ lim inf
r→1

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

≤ min

{
τ(α1,β,γ)[f ◦ g]
τ(α2,β,γ)[f ]

,
τ (α1,β,γ)[f ◦ g]
τ (α2,β,γ)[f ]

}
≤ max

{
τ(α1,β,γ)[f ◦ g]
τ(α2,β,γ)[f ]

,
τ (α1,β,γ)[f ◦ g]
τ (α2,β,γ)[f ]

}
≤ lim sup

r→1

exp(α1(log T (r, f ◦ g)))
exp(α2(log T (r, f)))

≤
τ (α1,β,γ)[f ◦ g]
τ(α2,β,γ)[f ]

.

Remark 2.7. If we take “0 < τ(α3,β,γ)[g] ≤ τ (α3,β,γ)[g] < +∞” and “λ(α1,β,γ)[f ◦
g] = λ(α3,β,γ)[g]” instead of “ 0 < τ(α2,β,γ)[f ] ≤ τ (α2,β,γ)[f ] < +∞” and “λ(α1,β,γ)[f◦
g] = λ(α2,β,γ)[f ]” and other conditions remain same, the results of Theorem 2.4 re-
main true with “τ(α3,β,γ)[g]”, “τ (α3,β,γ)[g]” and “exp(α3(log T (r, g)))” in place of
“τ(α2,β,γ)[f ]”, “τ (α2,β,γ)[f ]” and “exp(α2(log T (r, f)))” respectively in the denomi-
nators.

Remark 2.8. If we take “ 0 < σ(α2,β,γ)[f ] ≤ σ(α2,β,γ)[f ] < +∞” and “λ(α1,β,γ)[f ◦
g] = ρ(α2,β,γ)[f ]” instead of “ 0 < τ(α2,β,γ)[f ] ≤ τ (α2,β,γ)[f ] < +∞” and “λ(α1,β,γ)[f◦
g] = λ(α2,β,γ)[f ]” and other conditions remain same, the results of Theorem 2.4
remain true with “σ(α2,β,γ)[f ]” and “σ(α2,β,γ)[f ]” in place of “τ(α2,β,γ)[f ]” and
“τ (α2,β,γ)[f ]” respectively in the denominators.

Remark 2.9. If we take “ 0 < σ(α3,β,γ)[g] ≤ σ(α3,β,γ)[g] < +∞” and “λ(α1,β,γ)[f ◦
g] = ρ(α3,β,γ)[g]” instead of “ 0 < τ(α2,β,γ)[f ] ≤ τ (α2,β,γ)[f ] < +∞” and “λ(α1,β,γ)[f◦
g] = λ(α2,β,γ)[f ]” and other conditions remain same, the results of Theorem 2.4 re-
main true with “σ(α3,β,γ)[g]”, “σ(α3,β,γ)[g]” and “exp(α3(log T (r, g)))” in place of
“τ(α2,β,γ)[f ]”, “τ (α2,β,γ)[f ]” and “exp(α2(log T (r, f)))” respectively in the denomi-
nators.

3. Conclusion

Many researchers have investigated on the growth properties of composite entire
functions during last several years from different angle of view using the concepts of
order, generalized order, (p, q)-th order, (p, q)-φ order, (p.q)-L order, relative order,
generalized order (α, β) and so many. On the other hand, Beläıdi et al. [4] have
introduced the definitions of (α, β, γ)-order of entire and meromorphic functions
which has a great contribution in the field of differential equations and extended so
many important results in this field. In this paper, we have introduced (α, β, γ)-
Nevanlinna order and (α, β, γ)-Nevanlinna type of an analytic function in the unit
disc U and also investigated some growth properties of the composition of two
analytic functions in the unit disc on the basis of their (α, β, γ)-Nevanlinna order,
(α, β, γ)-Nevanlinna lower order, (α, β, γ)-Nevanlinna type and (α, β, γ)-Nevanlinna
weak type as compared to the growth of their corresponding left and right factors,
where α, β, γ are continuous non-negative functions defined on (−∞,+∞).

This concept of (α, β, γ)-Nevanlinna order and (α, β, γ)-Nevanlinna type in the
unit disc may help to develop the theory of growth properties of linear differential
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equations whose coefficients are entire or meromorphic functions. This is a vast
area of active research and left to the interested researchers.

Acknowledgement. The authors are very much thankful to the reviewer for
his/her valuable suggestions to bring the paper in its present form.
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