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CAYLEY YOSIDA INCLUSION PROBLEM INVOLVING
XOR-OPERATION IN ORDERED HILBERT SPACES

T. RAM, M. IQBAL, J. IQBAL

ABSTRACT. In this paper, we consider and study a new class of variational in-
clusions called the Cayley Yosida inclusion problem involving XOR operations.
By demonstrating the equivalence of our proposed problem to a fixed-point
equation, we establish a foundational connection. Based on this fixed-point
formulation, we introduce an iterative algorithm aimed at deriving existence
and convergence results for the specified problem. Through systematic analy-
sis, we substantiate the theoretical framework supporting the convergence of
our proposed algorithm. To illustrate the practical applicability of our find-
ings, we furnish a numerical example using MATLAB, shedding light on the
effectiveness and feasibility of the devised approach. This research contributes
to the broader understanding of variational inclusions involving XOR oper-
ations, offering a new perspective and computational methodology through
the exploration of the Cayley Yosida inclusion problem. The developed algo-
rithm not only provides theoretical insights but also demonstrates its practical
utility through the presented numerical case, emphasizing the versatility and
effectiveness of the proposed solution in tackling real-world problems.

1. INTRODUCTION

As a generalization of the traditional optimization problem, Hartman and Stam-
pacchia [9] first introduced variational inequalities in the 1960s. They provide a
framework for studying the existence and uniqueness of solutions to inequality con-
straints. Variational inclusions generalize the concept of variational inequalities.
They provide a more comprehensive framework for modeling and solving a wide
range of equilibrium problems, see [3]. Various solution techniques have been de-
veloped for variational inequalities and inclusions, including projection methods,
penalty methods, and fixed-point algorithms. These methods provide numerical
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approaches for finding approximate solutions; see for example, [4, 7, 11, 21]. Vari-
ational inequalities and inclusions have found applications in diverse fields, such as
mathematical economics, engineering, transportation, and physics. They are used
to model and solve problems involving equilibrium, optimization with constraints,
and game theory, among others; see [6, §].

In 2008, Li [12] introduced and studied a new problem known as generalized
nonlinear ordered variational inequalities (the ordered equations). These were ex-
tensively studied, focusing on developing an approximation algorithm and solution
for a specific class of these inequalities and equations in ordered Banach spaces.
Several studies have been carried out in this direction, including references to no-
table works such as [13, 14, 15, 16, 17, 18, 19, 20]. These research efforts have
expanded our understanding of generalized nonlinear ordered variational inequali-
ties and equations. In recent times, Ahmed et al. [1] proposed a new approach by
introducing a novel mapping called H(., .)-ordered-compression mapping. They also
defined a resolvent operator and explored its properties using XOR and XNOR op-
erations. Additionally, they developed an algorithm specifically designed for solving
XOR-variational inclusion problems. Furthermore, the study of ordered variational
inclusions with XOR operators has gained significant attention in various research
domains. Very recent examples of this direction of research can be found in [2, 10].

Motivated by the on-going research in this direction, in this paper we introduce
a novel inclusion problem known as the Cayley Yosida inclusion problem involving
XOR-operation. To tackle this problem, we propose an iterative algorithm based on
the fixed-point formulation. Through this algorithm, we conduct a comprehensive
convergence analysis for the aforementioned problem. Finally, we provide a nu-
merical example that satisfies our main result and show the convergence by using
MATLAB.

2. PRELIMINARIES

Let X be a real Hilbert space with the usual norm ||.|| and the inner product (., .).
The metric induced by the norm ||| is denoted by d. Let N be a cone in X. The
partial ordering denoted by ”<” is induced by cone X. When X is equipped with
this partial ordering, it is referred to as an ordered Hilbert space. We denote C'(X)
as the collection of all compact subsets of ¥, and 2* as the collection of all non-
empty subsets of ¥. The Hausdorff metric on C'(X) is represented by D(.,.). For
any arbitrary elements w and ¥ belonging to 3, glb{w, ¥} and lub {w, ¥} represent
the greatest lower bound and the least upper bound, respectively, for the set {w, 9}
with respect to the partial ordering ” <”.

We define several operations:

A as the AND operator, V as the OR operator, @ as the XOR operator, and ©® as
the XNOR operator. These operations are defined as follows:
(i) wA Y = glb{w, v},
(il)) wV I =lub{w,d},
(i) wd V= (w—1) V (V¥ —w),
(iv) w@ ¥ =(w—19)A(J—w).

Definition 2.1. [22] A cone is a non-empty closed convex subset W of ¥, satisfying

(i) ifweN and 7 >0, then Tw € N,
(ii) if w e N and —w € X, then w = 0.
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Definition 2.2. [5, 22] Suppose X is a cone. Then

(i) For arbitrary elements w,¥ € ¥, w < ¥ if and only if w — 9 € X,
(ii) w and ¥ are said to be comparable to each other if and only if w < & or
¥ < w and we denote it by w o V.

The following definitions and results can be found in [12, 13, 14, 15, 16, 17, 18, 19,
20].

Proposition 2.1. Let ¥ denote an ordered Hilbert space, and let < be a partial
ordering defined on X. For any elements w, ¥, v, u € X, the following conditions are

fulfilled:

() wdd=90w, wbw=0, WwEI=U90w=—(wadd) =—-(YPw),
(i) let T be a real number, then (Tw) @ (1Y) = |7| (w B V),
(iil) if w x ¥, then — w0 <w < w0,

(iv) 0<wd ¥, if wx ¥,

v) if w x ¥, then w ® ¥ =0 if and only if w = 9,

Vi) W+ D v+p) >wav)— W) V(wdp) — W0 ov),
(vii) [|0® O[ = [|0[} = 0,
(viii) Jlw &9 < [lw -7,
(ix) if w x ¥, then |lwd V|| = |lw — V| .

Definition 2.3. Assume that G : ¥ — X is a mapping. Then

(i) G is an &-order non-extended mapping if there exists a constant & > 0 such
that

E(wa ) <Gw)dGW), foradlw,d e,

(ii) G is a comparison mapping if w x ¥, then G(w) < G(9), w x G(w) and Y
G(0), for allw,d € X,

(iii) G is a strongly comparison mapping, if G is comparison mapping and
G(w) x G(9) if and only if w < ¥, for all w, ¥ € X.

Definition 2.4. Let G : ¥ — X be a mapping and Q : ¥ — 2% be a multi-valued
mapping. Then

(i) Q is called a weak-comparison mapping if p, € QWw), w X p,, and if
w x ¥, then there exists py € Q(V) such that py, x g, for all w, ¥ € 3,

(ii) @ is called a ag-weak-non-ordinary difference mapping with respect to G
if it is a weak comparison and for each w,9 € X, there exists ag > 0 and
te € Q(G(w)) and py € Q(G(VY)) such that

(he @ po) © aq(G(w) ® G(Y)) =0,

(iii) @ s called a p-order different weak-comparison mapping with respect to G,
if there exists p > 0 and for all w,9 € 3, there exists p, € Q(G(w)), py €
Q(G(9)) such that

Pt — H9) X w — 1,

(iv) A weak-comparison mapping @Q is called (ag, p)-weak GNODD if it is an

ag-weak-non-ordinary difference mapping and p-order different weak-comparison

mapping associated with G, and [G + pQ)] (X) = X.
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Definition 2.5. Let G be a -ordered non-extended mapping and @ be a ag-non-
ordinary difference mapping with respect to G. The resolvent operator jgp HYEE DN
associated with G and @ s defined by

jé?,p(w) =[G+ PQ]_l(w), forallweX, p>0.

Lemma 2.1. Let Q : ¥ — 2% be an ordered (ag, p)-weak GNODD mapping and
G : Y — X be a &-ordered non-extended mapping with respect to G. Then for
ag > %, the following relation holds:

JE (w)ye g, ) < (wa ), for allw,9 € X. (1)

1
flagp—1)
Definition 2.6. The generalized Cayley operator Kg,p : X — X is defined as

’Cgp(w) = [2j§p — G} (w), for allw € 2.

Definition 2.7. The generalized Yosida approximation operator Tg,p Y — X is
defined as

Tg,p(w) = % [G = Jgp} (W), for allw € 2.

Definition 2.8. A mapping G : ¥ — X is called Lipschitz continuous if there exists
a constant g > 0 such that

1Gw) = GO < 7w — 9], for allw, € 5.

Definition 2.9. Let S : ¥ — C(X) be a multi-valued mapping. Then S is called
D-Lipschitz continuous if there exists a constant Tp > 0 such that

D (S(w),S(®)) <7pllw—="1, for alw,¥ € X.

Proposition 2.2. [10] Ifw x ¥, G is 7g-Lipschitz continuous, ngp(w) x Kg’p(ﬂ), G(w) x
G(), for allw,V € X, then ICg , 18 Tic-Lipschitz continuous, where T = %
Proposition 2.3. Ifw x ¥, G is Tg-Lipschitz continuous, Tgyp(w) x Tgp(ﬁ), G(w) x

1+TG§(OLGP*1).

G(), for allw,¥ € X, then Tgp is Ty -Lipschitz continuous, where Ty = (oG

Proof. For all w,¥ € 3, using Lemma 2.1, we evaluate

1

18,10 18,0] = | [66) - 58,) & 1 [60) - 58,0

N % ngﬂ(“) ® jg,p(ﬁ)H + % |G(w) & G|
1
< =D o ® ]l + 2 1Gw) & GO

Since w o 1, Tg,p(”) x Tg’p(ﬁ), G(w) x G(Y¥) by (ix) of Proposition 2.1 and
using Lipschitz continuity of G, we obtain

1 Ta
H Golw) =Yg ()| < aar=T " s I I
that is,
|78 ) =T, @)|| < 7r o - 01l
where 7y = Lraélacp—1) -

pE(agp—1)
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3. FORMULATION OF THE PROBLEM AND CONVERGENCE ANALYSIS

Let ¥ be an ordered real Hilbert space. Let f : ¥ x ¥ - Y and G: ¥ — X
be single-valued mappings. Let Q : ¥ — 2% and A : ¥ — C(X) be multi-valued
mappings. Let for p > O,ICg, p 8 X be generalized Cayley operator and

Tgy " > — ¥ be generalized Yosida approximation operator. We consider the
following problem:
Find w € ¥ and p € A(w) such that

0€ f(KE, @) 0T, w).p)+Qw) (2)
Problem (2) is called the Cayley Yosida inclusion problem involving XOR-operation.
Lemma 3.2. Forw € H, u € A(w) is the solution of (2) if and only if it satisfies

w=78, 6w - pf (K&, ) & T w).u)]- 3)
Proof. Suppose w € H, u € A(w) satisfy (3), then

w=78, (6w —of (K&, &1E w).n)]

w=(G+pQ) 7 [Gw) — pf (K@) & TE ,(w). )]

G(w) +pQ(w) = Glw) - pf (K2 () @ TE (), 1)

0€ f (K, @)@, @) 1) +Qw).
(]

Algorithm 3.4. For given wy € X, we choose g € A(wg) and compute the se-
quences {wn} and {un} by the following iterative scheme:

i1 = (1= 0w +aJg, [Glwn) = pf (K& (wn) @ TE (wn) )] ()
Let pp+1 € A(wn1) such that

1 ® pingll = ltn = pingrll < D (Alwn), Alwn1)) 5 (5)
where iy, X fny1, 0 <a <1, p>0 are constants and n =0,1,2,- - -.
Theorem 3.5. Let ¥ denote a real ordered Hilbert space. Consider the mappings
F:ZxE2 =X A8 =5 C%),G: X =% and Q : X — 2%, satisfying the
following properties:
(1) f is Lipschitz continuous in both arguments, with Lipschitz constants Ty
and Tf2, respectively.
(ii) A is D-Lipschitz continuous with constant Tp.
(i) G is -ordered, non-extended and Lipschitz continuous with constant 7¢.
(iv) Q is (ag, p)-weak GNODD mapping.
Let jé{p satisfy condition (1), the generalized Cayley operator ICgp is Tic-Lipschitz
continuous, and the generalized Yosida approximation operator Tg,p 18 Ty -Lipschitz
continuous. Suppose wy, X Wpi1, = 0,1,2,- - Kg,p(w) x Kg’p(ﬁ), Gw) x
G(9), Tg,p(w) x Tgm(ﬁ), for all w,¥ € ¥. Let the following condition hold:

0<(1—a)+aPO)rg+ aP@)prremp + 741(Tc + 71)] < 1, (6)
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where P(0) = m and ag > ,—1). Then problem (2) has a solution (w,u),

and the sequences {wy} and {un,} generated by Algorithm 3.4 converge to w and p,
respectively.

Proof. Using (4) and (iv) of Proposition 2.1 as wy4+1 x w,, we deduce

0 < wni1 ®wn = [(1= a)wn + TG, [Glun) - pf (K, (wn)
&YE,(wn), un)ﬂ ® [(1 — )wn1+ g, [G(wn-1)
—pf (K ,(@n-1) & T (wn 1), 1) ]
< (1= a)wn Bwn1) + o [TE, [Glwn) = pf (KE ,(wn)
&Y, (wn)iin)| @ I8, [Glwnr) = pf (K ,(wn-1)

DG (w1, ) || - (7)

Since Jg p satisfy condition (1) and using the commutativity property of the @
operation, we can transform (7) into

0 <wpt1 Pwn <(1—a)(wy, Pwn—1) + aP(h) HG(wn) —pf (Kg’p(wn)
O (). pn) | @ |Glwar) = o (KE y(wn-)

@Tgw(wn—l)a Mn—l)}}
< (1~ @) ® wn 1) + 0P(B) [(Gleon) & Clen 1)

e (f (’Cg,p(“n)@Tg,p(wn),un)

of (K&, (wn1) ®TE (wn1), 1)) ] (8)
Using (viii) of Proposition 2.1, from (8), we have

wns1 @ wnll < (1= @) |wn ® was]| +aP(6) | (Glwn) & Glwa1)
0 (£ (K& ,(wn) & TE ,(@a) tin) & £ (K, (wn-1)
ST, @a1)iptn1)) |
< (1= )|l & wn-il| + aP(0) [G(wn) & Glwn-1)]
+aPO)p | (K2 ,(wn) & TE, (@a) n)
0F (K& p(wn1) © T8 (wnr). pu ) |
< (1= ) |lwn = wn-1ll + aP(O) [Glwn) = Glwn-1)]
+aP@O)p]|f (K&, wn) T, (wn) s

—f (K8 (wn1) © T (wn-1)s 1) | (9)
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As wp 41 X wy, for all n, using (ix) of Proposition 2.1 and Lipschitz continuity of G
from (9), we have

Jwn1 = wall < (1 = @) lwn = wamt ]|+ PO o — w1l
+aPO)p | £ (K&, (wn) ® Y, (wn), imn)

£ (K8 wn-1) @ Y& (w1, 1) |- (10)

Using Lipschitz continuity of f in both the arguments and D-Lipschitz continuity
of A, we have

|7 (K8 ) @ T wn)osin) =  (KE yfewn-1) @ TE  (war). o ) |

= || (€& (wn) @ TE pwn)sin) = £ (K plwn) ® T, (wn) pin 1 )

+f (K8 (wn) © T (wn)stn-1) = f (K pwn-1) © TE ,(@n-1), in-1 ) |

< |17 (K& p(wn) @ Y () in) = £ (KE (wn) © T (wn)ptn-1 )

|7 (K2 wn) © T (wn)stin-1) = f (K (wn1) @ T (wn-1), 1) |

< 752 ltn = a4 751 [ (K62 (00 @ T2 () = (KL, (en 1) © T8, ) |
< 712D (Afwn) Alwn-1)) + 771 | (K& (wn) & T, (wn)

- (’Cg,p(wnfl) DTS, (wn1) )H

< 7p27p llwn = wn-ll + 771 || (K2 () © T (wn)) = (K, (@n-1) @ T (wa)) |-
(11)

Using Lipschitz continuity of /Cg)p, Tgm’ condition (vi) of Proposition 2.1, and the
fact that @ is commutative, we have

(K2 wn) @ TE () = (K (wn-1) @ TE (@)

= [|(k8 ) @ TG ) = (T8 00) ea/cgp(wnfl )|
(K& () + T8 y(wn)) @ (T ) +KE () |
(K& ) + 78 (1)) = (Y& ) + K& () )|

K2 p(wn) = K (wn-1)| + | T () = TE ,(war)

< 7 |wn — w1 + 71 [|wn — Wn—1]| - (12)

IN

IN

IN

Using (12) in (11), we have

£ (18 (wn) @ XE (wn)s ) = £ (K fwn-1) & TE (wn-1), i )|
<[rp2mp + 711 (7 + 7r)] lwn — w1l (13)
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From (10) and (13), we have
lwntr = wall < (1 =) lwn = wnall + aP(0)76 |wn — wnll

+aP0)p(rremp + 71 (Tic + 1)) lwn — wi—1]|
- [(1 —a) + aP(0)tg + aP(0)p [Tf2D + 741 (T + T‘r)]:|

X [|wn — wp—1]

= (6) [ — il (14)

where 7(0) = {(1 —a) +aP(0)tq + aP(0)p[ts2mD + 741 (T + T1)] }

By the condition (6), n(f) < 1, we can deduce from (14) that the sequence {w,, }
is a Cauchy sequence. Consequently, there exists an element w € ¥ such that {w,}
converges to w as n — oo. Utilizing (5) and the D-Lipschitz continuity of A, we
can infer that {u,} is also a Cauchy sequence in X. Thus, there exists an element
€ X such that {u,} converges to u as n — co. Employing the continuity of all
the operators involved in (2) and Lemma 3.2, we conclude that

W= jé%p [G(w) —pf <ICg’p(w) &) Tg,p(w),u)} )
Therefore, the result follows. (Il

sectionNumerical example To support Theorem 3.5, we present the following
numerical example:

Example 3.6. Let X = R with the usual norm and inner product.
(i) Let f : X x X — X be a single-valued mapping such that

2w v
f(w, V) = ITARTE

Then for any wi,ws, ¥ € X, we have

||f(QJ1,’L9) - f(W2,19)|| = =2 . + g H

7T 13

2
77 lwr = wall
< 2 fur — wnl

— 15 Y
that is, f is Lipschitz continuous with respect to its first argument, with a
constant 71 = 1—25 Similarly, it can be shown that f is Lipschitz continuous
with respect to its second argument, with a constant Tro = ﬁ
(il) Let A: X — C(X) be a multi-valued mapping defined as

ao - {2}

Now
2w 29 29 2w
D (Aw),A()) < max{‘ 17~ ﬁ' 17~ ﬁH}

2

= gpmaz{flw =9I, |19 — wl}
2

< — — .

< = w9
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(iii)

(iv)

(vii)

(viii)

That is, A is D-Lipschitz continuous with constant Tp = %
Let G : ¥ — ¥ be a single-valued mapping defined by

Clearly G is Lipschitz continuous with constant 7 = % and &-ordered non-
extended mapping with constant & = %
Let Q : ¥ — 2% be a multi-valued mapping defined by

Qw) = {3w}.

For p =5, it is clear that Q is (ag, p)-weak GNODD mapping with ag =
Based on the aforementioned calculations, we can derive the resolvent o
erator jGQ’p such that

2
5 -
p_

TE,w) =[G+ Q) (w) = —w,
where p = 5.
The resolvent operator jgp satisfies the condition (1), that is,
5 5
Q Q _
JG,p(w) @ Jg,(0) = rr
5
= — 9
6 (we )
1
< _(w S3) 19)7
2
wher@ m = %

Using the value of jc(:?,p: we obtain the generalized Yosida approximation

operator Tg,p as

1

e, W) -2 G(w) _jg{p(w)} 51

= —w.
1900
Clearly, Tg p S Lipschitz continuous with a Lipschitz constant

1 +71cé(agp—1) 37
™ = =

pelagp—1) 25
Using the value of jgp, we obtain the generalized Cayley operator ICg’p as
—13
K2 (w) = [wg{p(w) - GW)| = 5w

Clearly, ICg 1S Lipschitz continuous with a Lipschitz constant

2+ 71cé(agp—1) 49

flagp—1) 35
ForP(O) =3, a=3%, 16 =2, p=5 1=, T2 =11, TD = 59, Tk =
g—g and Ty = %, the condition (6) of Theorem 3.5 is satisfied.

K

Therefore, all the conditions of Theorem 3.5 are fulfilled, and as a result, problem
(2) possesses a solution (w, p). Consequently, {wyn} and {un} converge to w and p,
respectively.
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TABLE 1. Numerical values of w,, for different initial values of wy.

No. of wo=10 No. of wy=2 No. of wyg=4

iterations W, iterations W, iterations W,

1 1.0000 1 2.0000 1 4.0000
2 0.5032 2 1.0064 2 2.0128
3 0.2532 3 0.5064 3 1.0129
4 0.127) 4 0.2548 4 0.5097
5 0.0641 5 0.1282 5 0.2565
6 0.0323 6 0.0645 6 0.1291
8 0.0082 8 0.0163 8 0.0327
10 0.0021 10 0.0041 10 0.0083
12 0.0005 12 0.0010 12 0.0021
14 0.0001 14 0.0003 14 0.0005
16 0.0000 16 0.0001 16 0.0001
18 0.0000 18 0.0000 18 0.0000
19 0.0000 19 0.0000 19 0.0000
20 0.0000 20 0.0000 20 0.0000

The sequence {wy} is computed using the following iterative scheme:

wpt1 = (1 — @)wy, + ajgp [G(wn) —pf (Kg)p(wn) @ Tgvp(wn),,unﬂ
23766851
~ 47230352
and i sr = (3) (23766851wn>
17 ) \ 47230352
23766851
~ 401457992 ™
All the code is implemented using MATLAB R2021a. Figure 4.1 (Table 1) illus-
trates the convergence behavior of {w,} for initial values wo = 1,2,4. Additionally,

Figure 4.2 (Table 2) presents the convergence of both {wn} and {u,} for initial
values wg = 1,4.
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Graph for different initial values of w,
4 T T T T T

0 1 1 1 1
0 10 20 30 40 50 60

n—

FIGURE 1. The convergence of {w,} with initial values wy =
1, wog =2 and wy = 4.

TABLE 2. Numerical values of w,, and p,, for different initial values
of wo-

Wy = 1.0 Wo = 4
No. of iterations Wn L No. of iterations Wn L

1 1.0000  0.0592 1 4.0000 0.2368
2 0.5032  0.0298 2 2.0128 0.1192
3 0.2532  0.0150 3 1.0129 0.0600
4 0.1274 0.0075 4 0.5097 0.0502
5 0.0641  0.0038 5 0.2565 0.0152
6 0.0323  0.0019 6 0.1291 0.0076
8 0.0082  0.0005 8 0.0327 0.0019
10 0.0021  0.0001 10 0.0083 0.0005
12 0.0005  0.0000 12 0.0021 0.0001
14 0.0001  0.0000 14 0.0005 0.0000
16 0.0000  0.0000 16 0.0001 0.0000
18 0.0000  0.0000 18 0.0000 0.0000
20 0.0000  0.0000 20 0.0000 0.0000

4. CONCLUSION

The paper introduces a new class of variational inclusions called Cayley Yosida
inclusion problems involving XOR, operations. We present a fixed-point formula-
tion of the problem and propose an iterative algorithm to solve it. We also conduct
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Graph for initial value of wy = 1.0

1 T T T T T T T T T

0.3 b

01r b

5

10 15 20 25 30 35 40 45 50
n—

Graph for initial value of wy = 4.0
4 T T T T T T T T T

1.5 b

05 b

0 5 10 15 20 25 30 35 40 45 50
n—

FIGURE 2. The convergence of {w,} and {u,} with initial values
wo =1 and wy = 4.

a convergence analysis of the algorithm to ensure its effectiveness. To validate
our main result, we provide a numerical example that demonstrates the practical
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applicability of our approach. Overall, this paper contributes to the study of vari-
ational inclusions involving XOR~operation, providing a theoretical framework and
a computational method for solving such problems.
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