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QUALITATIVE STUDY FOR A COUPLED SYSTEM OF

DIFFERENTIAL EQUATION ON THE REAL HALF-LINE

AHMED M. A. EL-SAYED1 AND MALAK M. S. BA-ALI2

Abstract. This research paper focuses on investigating the solvability of the

qualitative study for a coupled system of differential equation on the real half-

line by applying Darboe’s fixed point Theorem and the technique of the mea-
sure of noncompactness (MNC). This study has been located in space BC(R+).

Furthermore, we prove the asymptotic stability of the solution of our problem,

we introduce the idea of dependency of the solutions on some data. Addition-
ally, we delve into the study of Hyers-Ulam stability. Finally, we present an

example to support our findings.
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1. Introduction

The study of differential equations has received much attention over the last 30
years or so. For papers studying such kind of problems (see [14, 15, 38, 39]) and
the references therein.
It is known that the nonlinear initial value problems create an important branch of
nonlinear analysis and have numerous applications in describing of miscellaneous
real world problems. Such kind of these equations have been considered in numer-
ous papers see [5] and references therein.
The technique associated with MNC in the Banach space BC(R+) have been suc-
cessfully used by J. Banaś (see [5, 35, 2]) to prove the existence of asymptotically
stable solutions for some functional equation (see [12, 13]).
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The authors in [31] discussed the problem

dx

dt
= f(t, x(t)), t ∈ (0,∞),

with the nonlocal integral condition

x(τ) +

∫ τ

0

g(s, x(s))ds = x0, τ ≥ 0

in an unbounded interval. Also, they studied the solvability of these problem using
the technique of MNC in an infinite interval and also discussed the asymptotically
stable and dependency.

Here we are concerning with the coupled system of initial value problem of the
functional differential equations

dx

dt
= f1(t, y(ϕ1(t))), x(0) = x0, t ∈ (0,∞) (1.1)

and
dy

dt
= f2(t, x(ϕ2(t))), y(0) = y0, t ∈ (0,∞). (1.2)

Our aim here is to establish the solvability of the solution (x, y) ∈ BC(R+) ×
BC(R+) of the problem (1.1)-(1.2). The main tools in our study is applying Darbo’s
fixed point Theorem [19] and MNC technique. Furthermore, the asymptotic stabil-
ity and dependency of (x, y) ∈ BC(R+)×BC(R+) on the initial data x0, y0 and
on the functions fi and ϕi, i = 1, 2 has been studied. The Hyers – Ulam stability
of the problem (1.1)-(1.2) will be studied. Finally, we give an example illustrate
our results.

The main tool in our work are the measure of noncompactness and Darbo fixed
point Theorem [19].
Let BC(R+) be the class of all bounded and continuous functions in R+, with the
standard norm

∥x∥BC(R+) = ∥x∥∗ = sup
t∈R+

|x(t)|

and E = BC(R+)×BC(R+) be the Banach space with the norm

∥(x, y)∥E = max { ∥x∥∗, ∥y∥∗ }.
Now [25, 28], let E = BC(R+)×BC(R+), X, Y ⊂ BC(R+) and

U = { u ∈ U : u = (x, y), x ∈ X, y ∈ Y } = X × Y.

Then, we can introduce the following:

ωT (x, ϵ) = sup {|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ϵ },

ωT (y, ϵ) = sup {|y(t)− y(s)| : t, s ∈ [0, T ], |t− s| ≤ ϵ }
and

ωT (u, ϵ) = max { ωT (x, ϵ), ωT (y, ϵ) },
then

ωT (U, ϵ) = sup ωT (u, ϵ) : u ∈ U,

ωT
0 (U) = lim

ϵ→0
ωT (U, ϵ), ω0(U) = lim

T→∞
ωT
0 (U).
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Also,

ω(U) = ω(X × Y ) = max { ω(X), ω(Y ) },
diam(U) = diam(X × Y ) = max { diam(X), diam(Y ) },

lim
t→∞

sup diam(U) = max { lim
t→∞

sup diam(X), lim
t→∞

sup diam(Y ) }

and

µ(U) = ω0(U) + lim
t→∞

sup diamU(t). (1.3)

Finally, we state the Darbo fixed point Theorem [19].
The following Theorem will be needed.

Theorem 1.1. Let Q be nonempty bounded closed convex subset of the space E
and let F : Q → Q be a continuous operator such that µ(FX) ≤ kµ(X) for any
nonempty subset X of Q, where k ∈ [0, 1) is a constant. Then F has a fixed point
in the set Q.

2. Existence of solution

Consider now the problem (1.1)-(1.2) under the following assumptions:
(i) ϕi : R+ → R+, i = 1, 2, ϕi(t) ≤ t are continuous and increasing.
(ii) fi : R+ × R → R, i = 1, 2 are continuous in t ∈ R+, ∀ x, y ∈ R and

satisfies Lipschitz condition

|fi(t, x)− fi(t, y)| ≤ bi(t)|x− y| ∀ t ∈ R+, x, y ∈ R, (2.1)

where bi is integrable
∫ t

0
bi(s)ds ≤

∫ T

0
bi(s)ds ≤ bi and

lim
t→∞

∫ t

0

bi(s)ds = 0, sup
t∈R+

∫ t

0

bi(s)ds < b∗i , i = 1, 2.

(iii) b∗ < 1, where b∗ = max { b∗1, b∗2 }.
From equation (2.1), we have

|fi(t, x)| − |fi(t, 0)| ≤ |fi(t, x)− fi(t, 0)| ≤ bi(t)|x|,

|fi(t, x)| ≤ |fi(t, 0)|+ bi(t)|x|
and

|fi(t, x)| ≤ |mi(t)|+ bi(t)|x|,
where

|mi(t)| = |fi(t, 0)| ∈ BC(R+) < ∞, lim
t→∞

∫ t

0

|mi(s)|ds = 0 and sup
t∈R+

∫ t

0

|mi(s)|ds < m∗
i .

Now, the following lemma.

Lemma 2.1. The coupled system of the functional differential equations (1.1)-(1.2)
is equivalent to the functional integral equations

x(t) = x0 +

∫ t

0

f1(s, y(ϕ1(s)))ds, t ≥ 0 (2.2)

and

y(t) = y0 +

∫ t

0

f2(s, x(ϕ2(s)))ds, t ≥ 0. (2.3)
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Proof. Let (x, y) ∈ BC(R+)×BC(R+) be a solution of the problem (1.1)-(1.2),
then by integrability we get

x(t)− x(0) =

∫ t

0

f1(s, y(ϕ1(s)))ds

x(t) = x(0) +

∫ t

0

f1(s, y(ϕ1(s)))ds

and

y(t) = y(0) +

∫ t

0

f2(s, x(ϕ2(s)))ds.

Substituting x(0) = x0 and y(0) = y0, we obtain (2.2) and (2.3).
Conversely, let (x, y) ∈ BC(R+)×BC(R+) be a solution of (2.2)-(2.3).
Differentiation (2.2)-(2.3), we obtain

dx

dt
= f1(t, y(ϕ1(t)))

and

dy

dt
= f2(t, x(ϕ2(t))).

Let t = 0, we have

x(0) = x0 and y(0) = y0.

Now, we have the following existences theorem.

Theorem 2.2. Assume that (i)− (iii) be satisfied, then the coupled system (1.1)-
(1.2) has at least one solution (x, y) ∈ BC(R+)×BC(R+).

Proof. Define the set

Qr = { (x, y) ∈ BC(R+)×BC(R+) : ∥x∥∗ ≤ r2, ∥y∥∗ ≤ r1, max { r1, r2 } ≤ r},

r =
a+m∗

1− b∗
, where a = max { |x0|, |y0| } and m∗ = max { m∗

1, m∗
2 }.

Let F1, F2 be defined on BC(R+) by

F1y(t) = x0 +

∫ t

0

f1(s, y(ϕ1(s)))ds, t ∈ R+, (2.4)

F2x(t) = y0 +

∫ t

0

f2(s, x(ϕ2(s)))ds, t ∈ R+ (2.5)

and F is given by

F (x, y)(t) = (F1y(t), F2x(t)).
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Now, let (x, y) ∈ Qr, then

|F1y(t)| =

∣∣∣∣x0 +

∫ t

0

f1(s, y(ϕ1(s)))ds

∣∣∣∣
≤ |x0|+

∫ t

0

|f1(s, y(ϕ1(s)))|ds

≤ |x0|+
∫ t

0

|m1(s)|ds+
∫ t

0

|b1(s)||y(ϕ1(s))|ds

≤ |x0|+m∗
1 + ∥y∥∗

∫ t

0

|b1(s)|ds

≤ |x0|+m∗
1 + r1 b∗1,

then

∥F1y∥∗ ≤ |x0|+m∗
1 + r1 b∗1 = r1, r1 =

|x0|+m∗
1

1− b∗1
.

Similarly, we obtain

∥F2x∥∗ ≤ |y0|+m∗
2 + r2 b∗2 = r2, r2 =

|y0|+m∗
2

1− b∗2
,

then

∥F (x, y)∥ = ∥(F1y, F2x)∥ = max { ∥F1y∥∗, ∥F2x∥∗ } ≤ r.

Hence the operator F : Qr −→ Qr.
Next, we prove that F is continuous on the ball Qr.
Now, let δ > 0 be given and take (x1, y1), (x2, y2) ∈ U ⊂ Qr, such that
∥x2 − x1∥∗ ≤ δ and ∥y2 − y1∥∗ ≤ δ, then

|F1y2(t)− F1y1(t)| =

∣∣∣∣x0 +

∫ t

0

f1(s, y2(ϕ1(s)))ds− x0 −
∫ t

0

f1(s, y1(ϕ1(s)))ds

∣∣∣∣
≤

∫ t

0

∣∣∣∣f1(s, y2(ϕ1(s)))− f1(s, y1(ϕ1(s)))

∣∣∣∣ds
≤

∫ t

0

|b1(s)||y2(ϕ1(s))− y1(ϕ1(s))|ds. (2.6)

(i) Choose T > 0 such that t ≥ T , then

∥F1y2 − F1y1∥∗ ≤ ∥y2 − y1∥∗
∫ t

0

|b1(s)| ds

≤ δ b∗1 = ϵ.

(ii) Also, for T > 0, t ∈ [0, T ] then from (2.6), we get

∥F1y2 − F1y1∥∗ ≤ ∥y2 − y1∥∗
∫ t

0

|b1(s)| ds

≤ ∥y2 − y1∥∗
∫ T

0

|b1(s)| ds

≤ δ b1 = ϵ1.

We can deduce that the operator F1 is a continuous operator and by the same
way we can prove F2 is also a continuous operator.
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Hence the operator F (x, y) = (F1y, F2x) : Qr −→ Qr is continuous.
Now, let U = X × Y be nonempty subset of Qr. Fix ϵ > 0 and choose y ∈ Y and
t1, t2 ∈ R+ such that |t2 − t1| ≤ δ, then

|F1y(t2)− F1y(t1)| =

∣∣∣∣x0 +

∫ t2

0

f1(s, y(ϕ1(s)))ds− x0 −
∫ t1

0

f1(s, y(ϕ1(s)))ds

∣∣∣∣
≤

∫ t2

t1

|f1(s, y(ϕ1(s)))|ds.

Now, let t1, t2 ∈ [0, T ], |t2 − t1| < δ, then we deduce that

ωT (F1y, ϵ) ≤
∫ t2

t1

|f1(s, y(ϕ1(s)))|ds < ϵ

ωT
0 (F1Y ) ≤ 0

and as T → ∞

ω0(F1Y ) = 0.

Similarly, we can deduce that

ω0(F2X) = 0,

then

ω0(FU) = max{ω0(F1Y ), ω0(F2X) } = 0.

Hence

ω0(FU) = 0. (2.7)

Moreover, for any v1 = (x1, y1), v2 = (x2, y2) ∈ U ⊂ Qr and fixed t ≥ 0, then
from (2.2) and (2.3) we get

|x2(t)− x1(t)| ≤
∫ t

0

f1(s, y2(ϕ1(s)))− f1(s, y1(ϕ1(s)))

≤
∫ t

0

|b1(s)||y2(ϕ1(s))− y1(ϕ1(s))|ds ≤ 2 r b∗1

and

sup
x2,x1∈X

|x1(t)− x2(t)| ≤ 2 r b∗1

0 ≤ diam X(t) ≤ 2 r b∗1,

then

lim
t→∞

diam X(t) be exist and ∈ [0, 2 r b∗1].

Similarly,

lim
t→∞

diam Y (t) be exist and ∈ [0, 2 r b∗2].
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Now, from (2.4) and (2.5), we have

|F1y2(t)− F1y1(t)| ≤
∫ t

0

|b1(s)||y2(ϕ1(s))− y1(ϕ1(s))|ds

≤
∫ t

0

|b1(s)| sup
y1,y2∈Y

|y2(ϕ1(s))− y1(ϕ1(s))|ds

≤
∫ t

0

|b1(s)| diam Y (s)ds

≤
∫ t

0

(
|b1(s)| lim

s→∞
diam Y (s) + ϵ

)
ds

≤
(

lim
t→∞

diam Y (t) + ϵ∗
)
.

∫ t

0

|b1(s)|ds

≤
(

lim
t→∞

diam Y (t) + ϵ∗
)
b∗1

≤
(

lim
t→∞

diam Y (t)

)
b∗1 + ϵ∗b∗1

≤
(

lim
t→∞

diam Y (t)

)
b∗1 + ϵ1,

then

diam F1Y (t) ≤ b∗1 lim
t→∞

diamY (t).

Hence

lim
t→∞

sup diam F1 Y (t) ≤ b∗1 lim
t→∞

sup diamY (t).

Similarly, we can deduce that

lim
t→∞

sup diam F2 X(t) ≤ b∗2 lim
t→∞

sup diam X(t).

Hence

diam (F1Y, F2X)(t) = max { diam (F1 Y (t)), diam (F2 X(t)) }

then

lim
t→∞

sup diam (F1Y, F2X)(t) = b∗

and

lim
t→∞

sup diam F U(t) = b∗. (2.8)

Now, from (2.7) and (2.8) and the definition of µ in (1.3), we obtain

µ (FU) = b∗.

Then by Darbo fixed point Theorem [19] F has a fixed point (x, y) ∈ U , then the
coupled system of functional integral equation (2.2)-(2.3) has at least one solution in
the space BC(R+). Consequently the problem (1.1)-(1.2) has at least one solution
in the space BC(R+).
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3. Asymptotic stability

Theorem 3.1. The solution (x, y) ∈ BC(R+) × BC(R+) of the coupled system
(1.1)-(1.2) is asymptotically stable in the sense that
for any ϵ > 0, there exist T (ϵ) > 0 and r > 0, such that, if any two solutions
(x, y), (x1, y1) ∈ U satisfy ∥(x, y)− (x1, y1)∥ ≤ ϵ, t ≥ T (ϵ).
This indicates that |x(t)− x1(t)| ≤ ϵ and |y(t)− y1(t)| ≤ ϵ, r ≥ T (ϵ).

Proof. From Theorem 2.2, we have evaluated, we have

∥y2 − y1∥∗ = ∥F1y2 − F1y1∥∗

=

∣∣∣∣ ∫ t

0

f1(s, y2(ϕ1(s)))ds−
∫ t

0

f1(s, y1(ϕ1(s)))ds

∣∣∣∣
≤

∫ t

0

|f1(s, y2(ϕ1(s)))− f1(s, y1(ϕ1(s)))|ds

≤ 2

∫ t

0

|m1(s)|ds+ 2 r2

∫ t

0

|b1(s)|ds

≤ 2 ϵ1 + 2 r1 ϵ2 =
ϵ

2
.

Similarly,

∥x2 − x1∥∗ ≤ ϵ

2
,

then

∥(x1, y1)− (x2, y2)∥ = ∥(F1y1, F2x1)− (F1y2, F2x2)∥
= ∥(F1y1 − F1y2, F2x1 − F2x2)∥
= ∥F1y1 − F1y2∥∗ + ∥F2x1 − F2x2∥∗

≤ ϵ

2
+

ϵ

2
= ϵ.

Consequently, the coupled system (1.1)-(1.2) is asymptotically stable.

Corollary 3.2. Let the assumptions of theorem 2.2 be satisfied, then the solution
of the problem (1.1)-(1.2) is unique.

4. Dependency

4.1. Dependency on the initial data x0, y0 and on the functions ϕi, i=1, 2.

Theorem 4.1. Let the assumptions of Theorems 2.2 be satisfies, then the solution
(x, y) ∈ U of the coupled system (1.1)-(1.2) is asymptotically dependence on the
initial data x0 , y0 and the functions ϕi , i = 1, 2 if ∀ ϵ > 0, ∃ δ (ϵ) such that

max

{
|x0 − x∗

0|, |y0 − y∗0 |, |ϕi − ϕ∗
i |

}
< δ,

then ∥(x, y)− (xs, ys)∥ < ϵ,

where x∗ be a solution of

x∗(t) = x∗
0 +

∫ t

0

f1(s, y
∗(ϕ∗

1(s)))ds, t ≥ 0
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and y∗ be a solution of

y∗(t) = y∗0 +

∫ t

0

f2(s, x
∗(ϕ∗

2(s)))ds, t ≥ 0.

Proof. Let (x, y), (x∗, y∗) ∈ U be two solutions of the coupled system (2.2)-
(2.3), then

|x(t)− x∗(t)| =

∣∣∣∣x0 +

∫ t

0

f1(s, y(ϕ1(s)))ds

− x∗
0 −

∫ t

0

f1(s, y
∗(ϕ∗

1(s)))ds

∣∣∣∣
≤ |x0 − x∗

0|+
∫ t

0

|f1(s, y(ϕ1(s)))− f1(s, y
∗(ϕ∗

1(s)))|ds

≤ δ +

∫ t

0

|f1(s, y(ϕ1(s)))− f1(s, y
∗(ϕ1(s)))|ds

+

∫ t

0

|f1(s, y∗(ϕ1(s)))− f1(s, y
∗(ϕ∗

1(s)))|ds,

then

∥x− x∗∥∗ ≤ δ + b∗1∥y − y∗∥∗ + b∗1|y∗(ϕ1(t))− y∗(ϕ∗
1(t))|

≤ δ + b∗1∥y − y∗∥∗ + b∗1ϵ
∗.

Hence

∥x− x∗∥∗ ≤ δ + b∗1 ∥y − y∗∥∗ + b∗1ϵ
∗.

Similarly,

|y(t)− y∗(t)| ≤ |y0 − y∗0 |+
∫ t

0

|f2(s, x(ϕ2(s)))− f2(s, x
∗(ϕ2(s)))|ds

+

∫ t

0

|f2(s, x∗(ϕ2(s)))− f2(s, x
∗(ϕ∗

2(s)))|ds,

then

∥y − y∗∥∗ ≤ δ + b∗2 ∥x− x∗∥∗ + b∗2ϵ
∗.

Hence

∥x− x∗∥∗ ≤ δ + b∗1 ( δ + b∗2 ∥x− x∗∥∗ + b∗2ϵ
∗) + b∗1ϵ

∗

≤ δ + b∗1 δ + b∗1 b∗2ϵ
∗ + b∗1ϵ

∗

1− b∗1 b∗2
and

∥y − y∗∥∗ ≤ δ + b∗2 δ + b∗1 b∗2ϵ
∗ + b∗2ϵ

∗

1− b∗1 b∗2
.

Hence

max { ∥x− x∗∥∗, ∥y − y∗∥∗} ≤ δ + b∗ δ + b∗2ϵ∗ + b∗ϵ∗

1− b∗2
= ϵ.

Since

∥(x, y)− (x∗, y∗)∥ = ∥(x− x∗), (y − y∗)∥
= max { ∥(x− x∗)∥∗, ∥(y − y∗)∥∗} < ϵ,
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then

∥(x, y)− (x∗, y∗)∥ < ϵ.

4.2. Dependency on the functions fi, i=1, 2.

Theorem 4.2. Let the assumptions of Theorems 2.2 be satisfies, then the solution
(x, y) ∈ U of the coupled system (1.1)-(1.2) is asymptotically dependence on the
functions fi , i = 1, 2 if ∀ ϵ > 0, ∃ δ (ϵ) such that∫ t

0

|fi(s, x(s))− f∗
i (s, x(s))|ds < δ,

then ∥(x, y)− (xs, ys)∥ < ϵ,

where x∗ be a solution of

x∗(t) = x0 +

∫ t

0

f∗
1 (s, y

∗(ϕ1(s)))ds, t ≥ 0

and y∗ be a solution of

y∗(t) = y0 +

∫ t

0

f∗
2 (s, x

∗(ϕ2(s)))ds, t ≥ 0.

Proof. Let (x, y), (x∗, y∗) ∈ U be two solutions of the coupled system (2.2)-
(2.3), then

|x(t)− x∗(t)| =

∣∣∣∣x0 +

∫ t

0

f1(s, y(ϕ1(s)))ds

− x0 −
∫ t

0

f∗
1 (s, y

∗(ϕ1(s)))ds

∣∣∣∣
≤

∫ t

0

|f1(s, y(ϕ1(s)))− f∗
1 (s, y

∗(ϕ1(s)))|ds

≤
∫ t

0

|f1(s, y(ϕ1(s)))− f1(s, y
∗(ϕ1(s)))|ds

+

∫ t

0

|f1(s, y∗(ϕ1(s)))− f∗
1 (s, y

∗(ϕ1(s)))|ds,

then

∥x− x∗∥∗ ≤ b∗1∥y − y∗∥∗ + δ.

Similarly,

|y(t)− y∗(t)| ≤
∫ t

0

|f2(s, x(ϕ2(s)))− f2(s, x
∗(ϕ2(s)))|ds

+

∫ t

0

|f2(s, x∗(ϕ2(s)))− f∗
2 (s, x

∗(ϕ2(s)))|ds,

then

∥y − y∗∥∗ ≤ b∗2 ∥x− x∗∥∗ + δ.

Hence

∥x− x∗∥∗ ≤ b∗1 (b∗2 ∥x− x∗∥∗ + δ) + δ

≤ b∗1 δ + δ

1− b∗1 b∗2
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and

∥y − y∗∥∗ ≤ b∗2 δ + δ

1− b∗1 b∗2
.

Hence

max { ∥x− x∗∥∗, ∥y − y∗∥∗} ≤ b∗ δ + δ

1− b∗2
= ϵ.

Since

∥(x, y)− (x∗, y∗)∥ = ∥(x− x∗), (y − y∗)∥
= max { ∥(x− x∗)∥∗, ∥(y − y∗)∥∗} < ϵ,

then

∥(x, y)− (x∗, y∗)∥ < ϵ.

5. Hyers - Ulam stability

Definition 5.1. [27, 37, 29] Let the solution (x, y) ∈ U of the coupled system
(2.2)-(2.3) be exists, then the problem (1.1)-(1.2) is Hyers-Ulam stable if
∀ϵ > 0, ∃ δ(ϵ) such that for any δ − approximate solution of the coupled system
(2.2)-(2.3), then (xs, ys) ∈ U satisfies,

max

{ ∣∣∣∣dxs

dt
− f1(t, ys(ϕ1(t)))

∣∣∣∣, ∣∣∣∣dysdt
− f2(t, xs(ϕ2(t)))

∣∣∣∣} < δ a(t) (5.1)

implies ∥(x, y)− (xs, ys)∥ < ϵ,

where sup
t∈R+

∫ t

0
a(s) ds ≤ k.

Theorem 5.2. Let the assumptions of Theorem 2.2 be satisfied, then the coupled
system (2.2)-(2.3) is Hyers - Ulam stable.

Proof. From (5.1), we have

−δ a(t) ≤ dxs

dt
− f1(t, ys(ϕ1(t))) ≤ δ a(t)

−δ∗ = −δ

∫ t

0

a(s)ds ≤ xs(t)− xs(0) +

∫ t

0

f1(s, ys(ϕ1(s)))ds ≤ δ

∫ t

0

a(s)ds = δ∗

−δ∗ ≤ xs(t)− x0 +

∫ t

0

f1(s, ys(ϕ1(s)))ds ≤ δ∗.

Similarly,

−δ a(t) ≤ dys
dt

− f2(t, xs(ϕ2(t))) ≤ δ a(t)

−δ∗ = −δ

∫ t

0

a(s)ds ≤ ys(t)− ys(0) +

∫ t

0

f2(s, xs(ϕ2(s)))ds ≤ δ

∫ t

0

a(s)ds = δ∗

−δ∗ ≤ ys(t)− y0 +

∫ t

0

f2(s, xs(ϕ2(s)))ds ≤ δ∗.
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Letmax {|xs(t)−x0+
∫ t

0
f1(s, ys(ϕ1(s)))ds|, |ys(t)−y0+

∫ t

0
f2(s, xs(ϕ2(s)))ds|} < δ.

Now,

|x(t)− xs(t)| =

∣∣∣∣x0 +

∫ t

0

f1(s, y(ϕ1(s)))ds− xs(t)

∣∣∣∣
≤

∣∣∣∣x0 +

∫ t

0

f1(s, y(ϕ1(s)))ds− x0 −
∫ t

0

f1(s, ys(ϕ1(s)))ds

+

∣∣∣∣xs(t)− x0 +

∫ t

0

f1(s, ys(ϕ1(s)))ds

∣∣∣∣
≤

∫ t

0

|f1(s, y(ϕ1(s)))− f1(s, ys(ϕ1(s)))|ds+ δ∗,

then

∥x− xs∥∗ ≤ b∗1 ∥y − ys∥∗ + δ∗.

Similarly,

|y(t)− ys(t)| ≤
∫ t

0

|f1(s, x(ϕ2(s)))− f1(s, xs(ϕ2(s)))|ds+ δ∗,

then

∥y − ys∥∗ ≤ b∗2∥x− xs∥∗ + δ∗.

Hence

∥x− xs∥∗ ≤ b∗1 ( b∗2 ∥x− xs∥∗ + δ∗) + δ∗

≤ b∗1 δ∗ + δ∗

1− b∗1b
∗
2

and

∥y − ys∥∗ ≤ b∗2 δ∗ + δ∗

1− b∗1b
∗
2

,

then

max { ∥x− xs∥∗, ∥y − ys∥∗} ≤ b∗ δ∗ + δ∗

1− b∗2
= ϵ.

Since

∥(x, y)− (xs, ys)∥U = ∥(x− xs), (y − ys)∥U
= max { ∥(x− xs)∥∗, ∥(y − ys)∥∗ } < ϵ,

then

∥(x, y)− (xs, ys)∥U < ϵ.

Example.
Taking into account the equation

dx

dt
=

t e−t

3
+

(t e−t − e−t)|y(t)|
8

, t ∈ (0,∞) (5.2)

and

dy

dt
=

t e−t

4
+

(t e−t − e−t)|x(t)|
16

, t ∈ (0,∞). (5.3)
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Set

f1(t, x) =
t e−t

3
+

(t e−t − e−t)|y(t)|
8

,

f2(t, y) =
t e−t

4
+

(t e−t − e−t)|x(t)|
16

.

Putting

m∗
1 =

1

3
, m∗

2 =
1

4
,m∗ = max{1

3
,
1

4
} =

1

3

b∗1 =
1

8
, b∗2 =

1

16
, b∗ = max{1

8
,

1

16
} =

1

8

we can find that
b∗ = 0.125 < 1,

then the problem (5.2)-(5.3) has at least one solution (x, y) ∈ BC(R+)×BC(R+).

6. Conclusions

In this investigation, the asymptotic stability and dependency of the solutions for
differential equation have been established on R+. Firstly, we studied the existences
of solutions (x, y) ∈ BC(R+)×BC(R+) of the problem (1.1)-(1.2), by applying the
technique associated with the MNC in the Banach space BC(R+). Next, we studied
the asymptotic stability and dependency of the solution (x, y) ∈ BC(R+)×BC(R+)
on the initial data x0, y0 and on the functions fi, ϕi. Moreover, we studied the
Hyers-Ulam stability. Finally, we discussed the example to illustrate our results.

Acknowledgment. The authors are very much thankful to ProfessorM. Cichon
for his careful reading and valuable suggestions which helped us to improve the
manuscript.
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[9] Banaś, J. Goebel, K. Measure of noncompactnees in Banach spaces, In lecture notes in pure

and applied mathematics, Volume 60, Marcel Dekker, New York, (1980).
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