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HEMI EQUILIBRIUM PROBLEMS ON HADAMARD

MANIFOLDS

S. JANA, C. NAHAK

Abstract. Throughout the years, equilibrium problems have been used to

study various problems appearing in dierent elds of mechanics, physics,

nonlinear programming, engineering mathematics, and so on (see, for exam-

ple [7], [12]). Consequently, lots of research has been done on solving equi-

librium problems under dierent circumstances in reexive Banach spaces.

This paper contemplates a generalized category of equilibrium problems on

Hadamard manifolds called hemiequilibrium problems (HEP). We initiate the

existence of solutions to hemiequilibrium problems (HEP) under the mono-

tonicity assumption on the underlying bifunction by applying the KKM tech-

nique. We construct some counterexamples in the Hadamard manifold to

rationalize our eorts. Additionally, we investigate a few iterative algorithms

to solve hemiequilibrium problems on these nonlinear domains. Some partic-

ular instances of hemiequilibrium problems are demonstrated. These general

classes of equilibrium problems are new on Hadamard manifolds. We hope

our outcomes and ideas will spark further investigation in this fascinating and

captivating eld of research.

1. Introduction

Equilibrium problems have signicant applications in many mathematical prob-
lems such as optimization problems, variational inequality problems, xed point
problems, Nash equilibria problems, complementarity problems, etc. It also ren-
ders us a unied framework to study a wide class of problems arising in economics,
nance, network analysis, transportation and optimization theory (see, for example
[7], [12]). Numerous ndings pertaining to the existence of solutions for equilibrium
problems and variational inequality problems have been studied in recent decades
(as an illustration, see [2], [3], [16], [32], [23]).
However, a number of academics have recently become interested in applying some
concepts and methods of nonlinear analysis from Euclidean spaces to Riemannian
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manifolds. From the point of view of Riemannian geometry, nonconvex and non-
smooth constrained optimization problems can be regarded as convex and smooth
unconstrained optimization problems, which oers some advantages for a general-
ization of optimization techniques from Euclidean spaces to Riemannian manifolds;
see, for instance ([30], [26], [24], [4]).
Colao et al. [5] have illustrated an example of an equilibrium problem on an Eu-
clidean space that cannot be solved by using the classical results known in vector
spaces, but the problem can be resolved by rewriting it on a Riemannian manifold.
On Riemannian manifolds, Németh [18] and Wang et al. [31] investigated mono-
tone and accretive vector elds. From Banach spaces to Hadamard manifolds, Li
et al. [13] extended maximal monotone vector elds. Some fundamental existence
and uniqueness theorems from the traditional theory of variational inequalities on
Euclidean spaces were extended to Hadamard manifolds by Németh [17]. Li et
al. [14] introduced the variational inequality problems on Riemannian manifolds.
Zhou and Huang [33] provided the notion of KKM mapping and proved a general-
ized KKM theorem on Hadamard manifolds.
The relationship between a vector variational inequality problem and a vector op-
timization problem on a Hadamard manifold was established by Zhou and Huang
[34]. Tang et al. [28] introduced the proximal point algorithm for pseudomonotone
variational inequalities on Hadamard manifolds. Li and Huang [15], studied the
generalized vector quasi-equilibrium problems.
Another important and useful generalization of equilibrium problems is known as
hemiequilibrium problems (see for example [20], [21], [22]). Hemiequilibrium prob-
lems include hemivariational inequality problems, variational inequality problems
and equilibrium problems as particular cases. Hemivariational inequality problems
have been studied on Hadamard manifolds by Tang et al. [29].
As far as we are aware, there is not a study that addresses hemiequilibrium issues
on Hadamard manifolds. The circumstances in which the solution sets of hemiequi-
librium problems are nonempty have been determined in this context. Additionally,
we have looked at an iterative technique for handling hemiequilibrium problems.
This work serves as an introduction to hemiequilibrium problems in nonlinear
spaces, and the insights it presents will motivate researchers to carry out addi-
tional research in this intriguing eld.

2. Preliminaries

In this segment, we review the essential terminology, fundamental characteris-
tics, and notations required for a thorough understanding of this article. These are
included in every textbook on Riemannian geometry (such as [27], [30]).
Let M be an n-dimensional connected manifold. We designate the n-dimensional
tangent space ofM at x as TxM , and the tangent bundle ofM as TM = x∈MTxM,
respectively. M is a Riemannian manifold when it has a Riemannian metric < ,  >
on the tangent space TxM , with a corresponding norm indicated by ‖‖. The length
of a piecewise smooth curve γ : [a, b] → M joining x to y such that γ(a) = x and

γ(b) = y, is dened by L(γ) =
∫ b

a
‖ γ̇(t) ‖γ(t) dt Then for any x, y  M the original

topology on M is induced by the Riemannian distance d(x, y), which can be dened
as the minimum length of all curves connecting x and y.
For any vector elds X, Y on M , there is precisely one covariant derivation known
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as the Levi-Civita connection, denoted by XY on any Riemannian manifold. Con-
sider a smooth curve in M called γ. If γ′X = 0, then a vector eld X is said
to be parallel along γ. We refer to γ as a geodesic if γ′ is parallel along γ. If the
length of a geodesic connecting x and y in M equals d(x, y), then it is considered
as a minimal geodesic.
A Riemannian manifold is complete if for any x  M all geodesics emanating from
x are dened for all t  R By the Hopf-Rinow theorem, we know that if M is com-
plete then any pair of points in M can be joined by a minimal geodesic. Moreover,
(M,d) is a complete metric space and bounded closed subsets are compact.
Assuming that M is complete the exponential mapping expx : TxM → M is dened
by expx v = γv(1), where γv is the geodesic dened by its position x and velocity v
at x
Recall that a Hadamard manifold is a simply connected complete Riemannian man-
ifold with nonpositive sectional curvature. On the Hadamard manifold, the expo-
nential mapping exp and its inverse exp−1 are continuous.

2.1. Convexity. Let M represent a Hadamard manifold with nite dimensions.

Denition 2.1. ([26]) A subset K of M is said to be geodesic convex if and only if
for any two points x, y  K, the geodesic joining x to y is contained in K That is
if γ : [0, 1] → M is a geodesic with x = γ(0) and y = γ(1), then γ(t)  K, for 0 ≤
t ≤ 1

Denition 2.2. ([26]) A real-valued function f : M → R dened on a geodesic
convex set K is said to be geodesic convex if and only if for 0 ≤ t ≤ 1,

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1))

Denition 2.3. ([5]) For an arbitrary subset C ⊆ M the minimal geodesic convex
subset which contains C is called the convex hull of C and is denoted by co(C) It
is easy to check that co(C) =

∞
n=1 Cn, where C0 = C and Cn = z  γx,y : x, y 

Cn−1
2.2. Locally Lipschitz function. LetM represent a nite dimensional Hadamard
manifold.

Denition 2.4. ([1], ([10]), ([25])) Let f : M → R  +∞ be a proper function.
It is said to be a locally Lipschitz function on M if for each x  domf, there exist
x and Lx > 0 such that

f(z)− f(y) ≤ Lxd(z, y), ∀z, y  B(x, x),

where denotes an open ball centered in x  M and radius x.

Denition 2.5. ([10]) Let f : M → R  +∞ be a locally Lipschitz function on
M . Given x  domf, the generalized directional derivative in the sense Clarke of
f at the point p in the direction w  TpM, denoted by fo(p;w), is dened as

fo(p;w) = lim
t→0+

sup
q→p

foφ−1(φ(q) + tdφ(p)w)− foφ−1(φ(q))

t

where (φ, U) is a chart at p.

We require the following lemma which provides some fundamental characteristics
of the generalized directional derivative on Hadamard manifolds.
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Lemma 2.1. ([10]) Let M be a Riemannian manifold and p  M Suppose that the
function f : M → R is Lipschitz of rank K on an open neighborhood U of p. Then,

(i) for each q  U, the function w → fo(q;w) is nite, positive homogeneous and
subadditive on TqM, and satises

fo(q;w) ≤ K‖w‖;
(ii) fo(q;w) is upper semicontinuous on TM and as a function of w alone is Lips-
chitz of rank K on TqM for each q  U ;

(iii) fo(q;−w) = (−f)o(q;w) for each q  U and w  TqM

Unless otherwise indicated, we consider M to be a nite dimensional Hadamard
manifold and K ⊆ M to represent a nonempty closed geodesic convex set in the
remainder portion of the work.

3. Existence Results for Hemiequilibrium Problems

This section deals with the existence of solutions to hemiequilibrium problems
(HEP) on Hadamard manifolds.
Let M be a Hadamard manifold and K be a closed geodesic convex subset of M
Let F : K × K → R be a bifunction satisfying the property F (u, u) = 0 for all
u  K. Then the equilibrium problem introduced by Colao et al. [5] is to nd a
point u  K, such that

(EP ) F (u, v) ≥ 0 for all v  K (1)

We present hemiequilibrium problem on Hadamard manifolds.
Assume that M is a Hadamard manifold and K is a closed geodesic convex subset
of M Let F : K×K → R be a bifunction satisfying the property F (u, u) = 0 for all
u  K. Let J : M → R be a locally Lipschitz function. Then the hemiequilibrium
problem, denoted by HEP(F,J,K) is to nd an element u  K such that

F (u, v) + Jo(u; exp−1
u v) ≥ 0, ∀v  K (2)

Denition 3.6. ([5]) We call a bifunction F to be monotone on K, if for any
u, v  K, we have

F (u, v) + F (v, u) ≤ 0 (3)

Denition 3.7. Let K be a geodesic convex subset of M A function f : K → R
is said to be hemicontinuous if for every geodesic γ : [0, 1] → K, whenever t → 0,
f(γ(t)) → f(γ(0))

To demonstrate the existence theorem, we revisit the idea of the KKM lemma.

Denition 3.8. ([34]) Let K ⊂ M be a nonempty closed geodesic convex set and
G : K → 2K be a set-valued mapping. We say that G is a KKM mapping if for any
u1, , um ⊂ K, we have

co(u1, , um) ⊂
m⋃

i=1

G(ui)

Lemma 3.2. ([5]) Let K be a nonempty closed geodesic convex set and G : K → 2K

be a set-valued mapping such that for each u  K, G(u) is closed. Suppose that

(i) there exists u0  K such that G(u0) is compact.
(ii) ∀u1, , um  K, co(u1, , um) ⊂ m

i=1 G(ui)
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Then
⋂

u∈K G(u) 6= ∅

We then provide the lemma that follows, which is required for the sequel.

Lemma 3.3. Let F : K × K → R be monotone and hemicontinuous in the rst
argument. Let for xed u  K, the mapping z 7→ F (u, z) be geodesic convex and
J : M → R be a locally Lipschitz function. Then u  K satises

F (u, v) + Jo(u; exp−1
u v) ≥ 0, ∀v  K; (4)

if and only if

− F (v, u) + Jo(u; exp−1
u v) ≥ 0, ∀v  K (5)

Proof. Since F is monotone

F (u, v) ≤ −F (v, u)

Therefore (4) implies (5). Conversely, let u  K be a solution of (5). Then

− F (v, u) + Jo(u; exp−1
u v) ≥ 0, ∀v  K (6)

Let w  K be arbitrarily xed and γ(t) = expu(t exp
−1
u w) for t  [0, 1] be a geodesic

joining u and w.
As K is geodesic convex, then γ(t)  K, for t  [0, 1] It follows from (6)

− F (γ(t), u) + Jo(u; exp−1
u γ(t)) ≥ 0 for 0 ≤ t ≤ 1 (7)

Now

0 = F (γ(t), γ(t)) ≤ tF (γ(t), w)+(1−t)F (γ(t), u), (as z 7→ F (u, z) is geodesic convex, )

⇒ t[F (γ(t), u)− F (γ(t), w)] ≤ F (γ(t), u)),

⇒ t[F (γ(t), u)− F (γ(t), w)] ≤ Jo(u; exp−1
u γ(t)), by (7);

⇒ t[F (γ(t), u)− F (γ(t), w)]− Jo(u; t exp−1
u w) ≤ 0;

by the positively homogeneous property of Jo(u; t exp−1
u w) [see Lemma 2.1], we

have

⇒ t[F (γ(t), u)− F (γ(t), w)]− tJo(u; exp−1
u w) ≤ 0,

⇒ F (γ(t), u)− F (γ(t), w)− Jo(u; exp−1
u w) ≤ 0, (as t > 0)

Since F is hemicontinuous in the rst argument taking t → 0, we have

F (u, u)− F (u, w)− Jo(u; exp−1
u w) ≤ 0, for all w  K

⇒ F (u,w) + Jo(u; exp−1
u w) ≥ 0, for all w  K

This completes the proof. 

Now, the primary existence theorem needs to be proven. First, we take the set
K to be bounded. In this case, K is a compact subset.

Theorem 3.1. Let K be a compact subset of M and F : K ×K → R be monotone
and hemicontinuous in the rst argument. Suppose for xed u  K, the mapping
z 7→ F (u, z) is geodesic convex, lower semicontinuous and J : M → R be a locally
Lipschitz function. Then HEP(F,J,K) admits a solution.
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Proof. Consider the two set-valued mappings G1 : K → 2K and G2 : K → 2K such
that

G1(v) = u  K : F (u, v) + Jo(u; exp−1
u v) ≥ 0, for all v  K,

G2(v) = u  K : −F (v, u) + Jo(u; exp−1
u v) ≥ 0, for all v  K

It is easy to see that u  K solves HEP(F,J,K) if and only if u  v∈KG1(v) Thus
it suces to prove that v∈KG1(v) 6= ∅
Step-1: G1 is a KKM map.
So we have to prove that for any choice of v1, v2, , vm  K,

co(v1, , vm) ⊂
m⋃

i=1

G1(vi) (8)

Suppose on the contrary that there exists a point u0 in K, such that u0  co(v1, , vm)
but u0  m

i=1 G1(vi) That is

F (u0, vi) + Jo(u0; exp
−1
u0

vi) < 0, ∀i  1, ,m (9)

This implies that for any i  1, ,m, vi  v  K : F (u0, v) + Jo(u0; exp
−1
u0

v) <
0 Since the function v 7→ F (u0, v) is geodesic convex, the set v  K : F (u0, v) +
Jo(u0; exp

−1
u0

v) < 0 is a geodesic convex set. Then

u0  co(v1, , vm) ⊆ v  K : F (u0, v) + Jo(u0; exp
−1
u0

v) < 0
Therefore F (u0, u0) + Jo(u0; exp

−1
u0

u0) < 0

But we have F (u0, u0)+Jo(u0; exp
−1
u0

u0) = 0, a contradiction. Hence G1 is a KKM
mapping.
Step:2 G2 is a KKM map.
From Lemma 3.3, we have G1(v) ⊂ G2(v), ∀v  K That is,

co(v1, v2, , vm) ⊂
m⋃

i=1

G2(vi)

Hence G2 is also a KKM mapping.
Step:3 G2(v) is closed.
Let un  G2(v), such that un → u as n → ∞ We show that u  G2(v), Since
un  G2(v), we have

−F (v, un) + Jo(un; exp
−1
un

v) ≥ 0

Since F (v, ) is lower semicontinuous and Jo is Lipschitz continuous, we have

−F (v, u) + Jo(u; exp−1
u v) ≥ 0

Hence u  G2(v) That is G2(v) is closed for all v  K
Step:4 G2(v) is compact.
Since G2(v) is a closed subset of a compact set K So G2(v) is compact for all
v  K
Hence by Lemma 3.2, there exists a point u  K such that u  ⋂

v∈K G2(v)
By Lemma 3.3, we have

⋂
v∈K G1(v) =

⋂
v∈K G2(v) That is u  ⋂

v∈K G1(v)
So there exists a point u  K such that

F (u, v) + Jo(u; exp−1
u v) ≥ 0, ∀v  K

Therefore, u  K solves HEP(F,K,J). 
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Example 3.1. Let K be a subset of R2 dened by

K = u = (u1, u2)  R2
+ : u2

1 + u2
2 ≤ 4 ≤ (u1 − 1)2 + u2

2
K is not convex in R2 (see Example 3.1 of [29]). We consider the Poincare upper
half model

H2 = u = (u1, u2)  R2;u2 > 0;
which forms a Hadamard manifold with constant curvature -1. Now the set K ⊂ H2

is geodesic convex and compact with respect to the metric dened by gH2 =
δij
u2
2
 Now

we dene the bifunction F : K ×K → R by

F (u, v) = v2 − u2

Now F (u, v) + F (v, u) = v2 − u2 + u2 − v2;
Hence F is monotone on K.
It is clear that z 7→ F (u, z) is geodesic convex, lower semicontinuous.
Let J : H2 → R  +∞ be dened by

J(u) = lnu2

Then J is locally Lipschitz on H2 (see Example 5 of [8]).
Then by Theorem 3.1, the HEP(F,J,K) has a solution.

The situation when K is unbounded, or noncompact, is the next scenario we
consider.

Theorem 3.2. Let K be a noncompact subset of M and F : K × K → R be
monotone and hemicontinuous in the rst argument. Suppose for xed u  K, the
mapping z 7→ F (u, z) is geodesic convex, lower semicontinuous and J : M → R be
a locally Lipschitz function. If there exists a point v0  K, such that

F (u, v0) + Jo(u; exp−1
u v0) < 0, whenever d(0, u) → +∞, u  K, (10)

then HEP(F,J,K) has a solution.

Proof. Given a point 0  M, we denote ΣR = u  M : d(0, u) ≤ R to be the
closed geodesic ball of radius R and center 0 Let KR = K  ΣR If KR 6= ∅, then
there exists at least one uR  KR such that

F (uR, v) + Jo(uR; exp
−1
uR

v) ≥ 0, ∀v  KR, (11)

by Theorem 3.1.
We now take a point v0  K satisfying (10), with d(0, v0) < R, so v0  KR
Hence by (11), we have

F (uR, v0) + Jo(uR; exp
−1
uR

v0) ≥ 0 (12)

If d(0, vR) = R for all R, we may choose R large enough so that d(0, vR) → +∞
Hence by (10), F (uR, v0) + Jo(uR; exp

−1
uR

v0) < 0, contradicts (12).
So there exists an R such that d(0, vR) < R
Given v  K, let γ(t) = expuR

(t exp−1
uR

v) be a geodesic joining uR to v Now since
d(0, uR) < R, we can choose 0 < t < 1, suciently small so that γ(t)  KR
Hence 0 ≤ F (uR, γ(t)) + Jo(uR; exp

−1
uR

γ(t))

≤ tF (uR, v) + (1− t)F (uR, uR) + Jo(uR; t exp
−1
uR

v)

= t[F (uR, v) + Jo(uR; exp
−1
uR

v)], [by Lemma 21]

or, as t > 0 F (uR, v) + Jo(uR; exp
−1
uR

v) ≥ 0, for v  K
That is uR solves HEP(F,J,K). 
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4. Proximal Point Algorithm for Solving Hemiequilibrium Problem

Several iterative techniques for resolving hemiequilibrium problems on linear
spaces were proposed by Noor et al. [22]. Neto et al. [6] have analyzed the proxi-
mal point algorithm for optimization problems involving monotone vector elds on
Hadamard manifolds. They have given examples of many nonconvex and nonmono-
tone functions which can be transformed into convex and monotone functions re-
spectively with the help of proper matrices. For equilibrium problems on Hadamard
manifolds, Noor et al. [19] haveoered an implicit iterative (proximal point) ap-
proach. On these spaces, Jana and Nahak [11] have investigated a few techniques
for solving mixed equilibrium issues. The proximal point algorithm (PPA) for the
hemiequilibrium problem (2) will now be addressed.
We assume K to be compact geodesic convex subset of the Hadamard manifold M
in this section.
At stage n, given un  K, ρ > 0, compute un+1  K, as a solution of the hemiequi-
librium problem

F (un+1, v) +
1

ρ

〈
exp−1

un
un+1, exp

−1
un+1

v
〉
+ Jo(un+1; exp

−1
un+1

v) ≥ 0, ∀v  K (13)

Denition 4.9. ([22]) Jo(; ) is said to be monotone if

Jo(u; exp−1
u v) + Jo(v; exp−1

v u) ≤ 0 (14)

Let us recall that a geodesic triangle ∆(x1x2x3) of a Riemannian manifold is
the set consisting of three distinct points x1, x2, x3 called the vertices and three
minimizing geodesic segments γi+1 joining xi+1 to xi+2 called the sides, where
i = 1, 2, 3(mod 3)

Theorem 4.3. [27] Let M be a Hadamard manifold, ∆(x1x2x3) a geodesic triangle
and γi+1 : [0, li+1] → M geodesic segments joining xi+1 to xi+2 and set li+1 =
l(γi+1), θi+1 = ](γ′

i+1(0),−γ′
i(li)), for i = 1, 2, 3(mod 3) Then

θ1 + θ2 + θ3 ≤ π,

l2i+1 + l2i+2 − 2li+1li+2 cos θi+2 ≤ l2i ,

d2(xi+1, xi+2) + d2(xi+2, xi)− 2
〈
exp−1

xi+2
xi+1, exp

−1
xi+2

xi

〉
≤ d2(xi, xi+1) (15)

By using the above inequality for any three points x, y, z  M, we can get

d2(x, y) ≤
〈
exp−1

x z, exp−1
x y

〉
+

〈
exp−1

y z, exp−1
y x

〉
 (16)

Lemma 4.4. ([13]) Let x0  M and xn  M such that xn → x0 Then the
following assertions hold.

(i) For any y  M

exp−1
xn

y → exp−1
x0

y and exp−1
y xn → exp−1

y x0

(ii) If vn is a sequence such that vn  Txn
M and vn → v0, then v0  Tx0

M
(iii) Given the sequence un and vn with un, vn  Txn

M, if un → u0 and
vn → v0 with u0, v0  Tx0

M, then
〈
un, vn

〉
→

〈
u0, v0

〉


The principle of Fejér convergence and the associated ndings, which are avail-
able in [9] and [13], are then revisited.
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Denition 4.10. Let X be a complete metric space and A ⊆ X be a nonempty
set. A sequence xn ⊂ X is said to be Fejér convergent to A if

d(xn+1, y) ≤ d(xn, y), ∀y  A and n = 0, 1, 2, 

Lemma 4.5. Let X be a complete metric space and let A be a nonempty subset
of X. Suppose xn ⊂ X be Fejér convergent to K and any cluster point of xn
belongs to A Then xn converges to a point of A

We are now in a position to prove the convergence of PPA for hemiequilibrium
problems involving monotone vector elds.

Theorem 4.4. Let F be monotone and continuous in the rst argument and
SOL(HEP) 6= ∅ Also assume that the sequence un generated by (13) is well
dened and Jo(; ) is monotone. Then un converges to a solution of the hemiequi-
librium problem (2).

Proof. We rst proof that un is Fejér convergent to SOL(HEP). Let v  K be a
solution of (2). Then

F (u, v) + Jo(u; exp−1
u v) ≥ 0, ∀v  K (17)

Taking v = un+1 in (17), we get

F (u, un+1) + Jo(u; exp−1
u un+1) ≥ 0 (18)

Since F is monotone then

F (un+1, u) ≤ −F (u, un+1) (19)

From (13), taking v = u we have

F (un+1, u) +
1

ρ

〈
exp−1

un
un+1, exp

−1
un+1

u
〉
+ Jo(un+1; exp

−1
un+1

u) ≥ 0;

⇒ 1

ρ

〈
exp−1

un
un+1, exp

−1
un+1

u
〉
≥ −[F (un+1, u) + Jo(un+1; exp

−1
un+1

u)];

⇒ 1

ρ

〈
exp−1

un+1
un, exp

−1
un+1

u
〉
≤ F (un+1, u) + Jo(un+1; exp

−1
un+1

u),

≤ −F (u, un+1)− Jo(u; exp−1
u un+1) (by monotonicity)

≤ 0
So we nally get as ρ > 0,

〈
exp−1

un+1
un, exp

−1
un+1

x
〉
≤ 0 (20)

Considering the geodesic triangle ∆(unun+1u) from (15), we get

d2(un+1, u) + d2(un+1, un)− 2
〈
exp−1

un+1
un, exp

−1
un+1

u
〉
≤ d2(un, u)

It follows from (20)

d2(un+1, u) + d2(un+1, un) ≤ d2(un, u) (21)

This clearly implies that d2(un+1, u) ≤ d2(un, u), so un is Fejér convergent to
SOL(HEP). From (21) it follows that

d2(un+1, un) ≤ d2(un, u)− d2(un+1, u) (22)

Since the sequence d(un, u) is bounded and monotone, it is also convergent. Hence
by (22), limn→∞ d2(un+1, un) = 0 That is

lim
n→∞

d(un+1, un) = 0
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Next we prove that any cluster point of un belongs to SOL(HEP). Let u be
a cluster point of un. Then there exists a subsequence nk of n such that
unk

→ u Hence d(unk+1, unk
) → 0, by the assertion just proved, and so unk+1 → u

It follows from (13) with n = nk,

F (unk+1, v) +
1

ρ

〈
exp−1

unk
unk+1, exp

−1
unk+1

v
〉
+ Jo(unk+1; exp

−1
unk+1

v) ≥ 0, ∀v  K

(23)
Passing to the limit as k → ∞ in (23) we get

F (u, v) + Jo(un+1; exp
−1
un+1

v) ≥ 0, ∀v  K

That is u  SOL(HEP ) Hence by Lemma 4.5, un converges to point of SOL(HEP).
This completes the proof. 

5. Applications

We will next go over a few specic instances of hemiequilibrium problems.

(i) Hemivariational inequality problem: For each u  K, let A : K → TM
be a vector eld, that is, A(u)  TuM . Tang et al. ([29]), proposed
hemivariational inequality problem on K, which is to nd a point u  K
such that

〈
A(u), exp−1

u v
〉
+ Jo(u; exp−1

u v) ≥ 0, ∀v  K (24)

If we dene

F (x, y) =
〈
A(u), exp−1

u v
〉
,

then the hemiequilibrium problem (2) and the hemivariational inequality
problem (24) are equivalent.

(ii) Equilibrium problem: If the function J is constant, then Jo(u; ) = 0 
TuM . So HEP(F,J,K) reduces to the following equilibrium problem intro-
duced by Colao et al. ([5]), which is to nd u  K such that

F (u, v) ≥ 0, for all v  K,

(iii) Variational inequality problem: Assume that V : K → TM is a vector
eld, that is, Vu  TuM for each u  K. If the function J is constant, then
Jo(u; ) = 0  TuM .
Then the problem introduced by Németh ([17]), is to nd u  K such that

〈
Vu, exp

−1
u v

〉
≥ 0, ∀v  K, (25)

is called a variational inequality problem on K If we denote

F (x, y) =
〈
Vu, exp

−1
u v

〉
,

then the hemiequilibrium problem (2) and the variational inequality prob-
lem (25) are same.

(iv) If M is a linear space, then HEP(F,J,K) is to nd a point u  K such that

F (u, v) + Jo(u; v − u) ≥ 0, ∀v  K,

which is a hemiequilibrium problem on Banach spaces introduced and in-
vestigated by Noor ([20], [21], [22]).
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(v) Optimization problem: Let f : K → R be a function and consider the
minimization problem

(P ) find x  K such that f(x) = min
y∈K

f(y)

If we set F (x, y) = f(y) − f(x), for all x, y  K Thus the problems (P)
and (15) are identical.

Conclusion: To best of our insight this paper is the rst paper to address hemiequi-
librium problems on Hadamard manifolds. We acknowledge that there are nu-
merous extension on studying hemiequilibrium problems on nonlinear spaces, for
emample

(i) From a theoretical perspective, one can investigate existence results by
applying weaker monotonicity assumptions on the underlying bifunctions.

(ii) Dierent algorithms can be searched for solving hemiequilibrium problems.
(iii) We have demonstrated the results on Hadamard manifolds. One can try to

extend these ndings on Riemannian manifolds.

This paper can be utilized as a stepping stone to analyze hemiequilibrium problems
on Hadamard Manifolds. We anticipate further exploration in this area in near
future.
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