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SOME NEW QUALITATIVE RESULTS FOR TWO

DIMENSIONAL NONLINEAR DIFFERENTIAL SYSTEMS

MELEK GÖZEN

Abstract. As we know ordinary differential equations, systems of ordinary

differential equations, in particular, two dimensional nonlinear differential sys-
tems have significant and various applications in qualitative theory of ordinary

differential equations. In some real world applications, it is needed to have in-

formation in relation to the qualitative concepts called stability, boundedness,
convergence, etc. of solutions of that kind of mathematical models. Most of

time, exact solutions of that kind of equations cannot be obtained explicitly,

except numerically. In the pertinent literature, one of the famous method
is known the Lyapunov’s second method, which allows to have information

about qualitative behaviors of solutions without solving the equation under-

study. In this study, we deal with a nonlinear a two dimensional nonlinear
differential system. We examine uniform asymptotic stability, boundedness,

uniform boundedness and uniform-ultimate boundedness of solutions of that
two dimensional nonlinear differential system. We will prove three new theo-

rems on the mentioned qualitative concepts by using the Lyapunov’s second

method. We provide two examples to demonstrate how the results of the study
can be applied. The results of this study generalize some recent results, which

can be found in the present literature.

1. Introduction

As we know from the relevant literature, ordinary differential equations of second
order without and with delay have numerous applications in sciences and engineer-
ing, see, for example the books of Ahmad and Rama Mohana Rao [8], Burton [10],
Chau [11], Hsu [19], LaSalle and Lefschetz [23], Nakanishi and Seto [25], Yoshizawa
([39, 40]) and the references of these books for some applications of that kind of
differential equations. Studying the qualitative characteristics of these kinds of
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mathematical models is therefore merited. Before giving the qualitative results of
this study, we would like to outline some works regarding qualitative behaviors of
ordinary differential equations of second order.

Ezeilo [12] considered the second-order vector system as follows:

X ′′ + CX ′ +G(X) = P (t,X,X ′).

Ezeilo [12] obtained sufficient conditions for convergence and ultimate boundedness
of solutions of this system by means of the second method of Lyapunov.

Ezeilo [13] considered the following two dimensional nonlinear differential system:

X ′ = F (X) +BY,

Y ′ = G(X) +DY.

Ezeilo [13] construcded sufficient conditions for the asymptotic stability solutions
of this system by using the Lyapunov’s second method.

Tejumola [31] studied the scalar nonlinear differential equations of second order
as follows:

x′′ + f(x, x′)x′ + g(x) = p(t, x, x′).

Tejumola [31] proved that solutions of this differential equation are all ultimately
bounded with the bounding constant dependening only on the functions of this
equation.

Qian [29] dealt with the scalar nonlinear differential equation of second order:

x′′ + (f(x′) + k(x)x′)x′ + g(x) = 0.

Qian [29] obtained sufficient conditions under which the trivial solution of this
equation is globally asymptotic stable by means of the second method of Lyapunov.

Tunç [33] focused on the nonlinear vector differential equation of second order:

X ′′ +B(t)G(X,X ′)X ′ +A(t)F (X) = P (t,X,X ′).

Tunç [33] investigated the stability and boundedness of solutions of this vector
differential equation of second order by using the second method of Lyapunov,
when P (.) = 0 and P (.) ̸= 0, respectively.

Tunç and Dinç [36] studied the boundedness and square integrability of solu-
tions of non-linear systems of differential equations of second order as follows ,
respectively:

(q(t)X ′)
′
+H(t,X,X ′)X ′ + a(t)X = Q(t,X,X ′)

and

(q(t)X ′)
′
+Φ(t,X,X ′) + a(t)G(X) = Q(t,X,X ′).

The authors [36] established two new theorems, which have sufficient conditions
guaranteeing the boundedness and square integrability of solutions these systems.
The proofs of the results depend upon the integral test.

Adeyanju and Adams [3] provided certain sufficient conditions that guarantee
the stability of zero solution and boundedness of all solutions of the following vector
differential equation of second order, when P (.) = 0 and P (.) ̸= 0, respectively:

X ′′ +AX ′ +H(X) = P (t,X,X ′).

The basic tool in the proofs of the results of Adeyanju and Adams [3] was a suitable
Lyapunov function.
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Adeyanju [2] considered the following second order nonlinear vector differential
equation:

X ′′ + F (X,X ′)X ′ +H(X) = P (t,X,X ′).

Adeyanju [2] derived sufficient conditions for the stability and boundedness of solu-
tions of this vector differential equation by using the second method of Lyapunov,
when P (.) = 0 and P (.) ̸= 0, respectively.

Adams et al. [1] obtained some criteria for the stability and boundedness of
solutions to the following nonlinear scalar differential equation of second order as
follows:

x′′ + b(t)f(x, x′) + c(t)g(x)h(x′) = p(t, x, x′).

Adams et al. [1] obtained the results of this study by applying a suitable Lyapunov
function.
In addition to the studies already mentioned, numerous intriguing findings can be
seen in the articles of ([4, 5, 7, 9, 14, 15, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28,
30, 32, 34, 35, 37, 38]), where stability, exponential stability, asymptotic stability,
stability in the large, boundedness, uniform-ultimate boundedness, convergence,
integrability, etc. of various mathematical models as ordinary differential equations
of second order, delay ordinary differential equations of second order, ordinary
differential system of second order, etc. have been investigated in general by the
second method of Lyapunov, integral test, and some others. For the sake for the
sake of the brevity, we would not like to give more details.

As for the motivation of this study, in 2023, Adeyanju et al. [6] focused on the
following systems of first order Aizermann differential equations:{

Ẋ = F (X) +H(Y ) + P1(t,X, Y ),

Ẏ = CX +DY + P2(t,X, Y ),
(1)

where X, Y ∈ Rn, C, D ∈ Rn×n are symmetric constant matrices, F, G ∈
C1 (Rn, Rn) with F (0) = G(0) = 0 and P1, P2 ∈ C1 (R+ ×Rn ×Rn, Rn). Adeyanju
et al. [6] discussed the uniform asymptotic stability of the trivial solution and uni-
form ultimate boundedness of all solutions to Aizermann vector differential equa-
tion (1) by defining an appropriate complete Lyapunov function. By this work,
Adeyanju et al. [6] solved some the open problems contained in Ezeilo [13].

In this study, inspired by the results of Adeyanju et al. [6] and those have been
presented above, we deal with the following two dimensional nonautonomus and
nonlinear differential system:{

Ẋ = A(t)F (X) +B(t)Y + P1(t,X, Y ),

Ẏ = C(t)G(X) +D(t)Y + P2(t,X, Y ),
(2)

where X,Y ∈ Rn, A,B,C,D ∈ C (R+, Rn×n) are symmetric matrices functions,
F, G ∈ C1 (Rn, Rn) with F (0) = H(0) = 0 and P1, P2 ∈ C1 (R+ ×Rn ×Rn, Rn).
We will study the some qualitative concepts as in Adeyanju et al. [6]. The aim of
this is study to extend the results of Adeyanju et al. [3] and allow new contributions
to the findings of Adeyanju et al. [6], Ezeilo [13], and those have already been
mentioned above.

2. Qualitative results

Let P1(.) = P1(t,X, Y ) = 0 and P2(.) = P2(t,X, Y ) = 0.



4 M. GÖZENN EJMAA-2025/13(1)

Three new theorems will be given here as our new qualitative findings, Theorems
2.1-2.3, respectively.

Theorem 2.1. Let K∗, α, αi, (i = 0, 1, 2), δk, (k = 0, 1, 2, 3),πj , (j = 1, 2, 3, 4), γ∗, γi, (i =
1, 2, 3, 4), β, βj , (j = 0, 1, 2),∆∗,∆k, (k = 0, 1, 2, 3), and µ1, µ2 be some positive
constants such that the following conditions hold:

(i)

δ0 ≤ λi(D(t)A(t)Jf (X)−B(t)C(t)Jg(X) + C(t)Jg(X)) ≤ ∆0,

δ2 ≤
∣∣∣∣λi(B(t)(I −B(t)) +

1

2
B′(t))

∣∣∣∣ ≤ ∆2;

(ii)
δ1 ≤ λi(−B(t)) ≤ ∆1,

γ1 ≤
∣∣λi(D

2(t) +D(t)A(t)Jf (X)−B(t)C(t)Jg(X) + C(t)Jg(X))
∣∣ ≤ γ2;

(iii)

−γ3 ≤ λi(Jg(X)Jf (X)) ≤ −γ4,−∆3 ≤ λi(−B(t)D(t)) ≤ −δ3

where Jf (X), Jg(X) denote the Jacobian matrices ∂fi
∂xi

, ∂gi
∂xi

of F (X) and

G(X), respectively,
(iv)

λi(A(t)) ≤ 1, λi(C(t)) ≤ 1, λi(B
′(t)C(t)) ≤ 1,−α2 ≤ λi(D(t)) ≤ −β2, α0 ≤ λi(D

′(t)) ≤ β0,

α1 ≤ λi(B
′(t)) ≤ β1,−γ∗ − γ4 − δ3 − β2β0 +

∆1β0

2
+

α1β2

2
≤ −α,

∆1β0

2
+

α1β2

2
+

1

2
β1 − δ1β1 ≤ −β, |λi(D(t)D′(t))| ≤ π1,

|λi(D(t)B′(t))| ≤ π2, |λi(B(t)D′(t))| ≤ π3,

|λi(B(t)B′(t))| ≤ π4, µ1 ≤ λi(Jg(X)) ≤ µ2, i = 1, 2, ..., n.

(v) The matrices B(t), D(t) and Jf (X) are symmetric and negative definite
while the matrices C(t), D′(t) and Jg(X) are symmetric and positive defi-
nite;

(vi) The matrix B(t) commutes with matrix D(t), and the Jacobian matrices Jg
and Jf also commute with each other;

(vii) The matrix {D(.)Jf (X)−B(t)C(t)Jg(X)} is positive definite;
(viii) The matrix

{B(t)C(t)Jg(X2)−D(.)Jf (X2)} {D(t) +A(t)Jf (X1)}
is positive definite for arbitrary X1, X2 ∈ Rn.

Then the trivial solution of system (2) is uniformly-asymptotically stable
and the solution of system satisfy

∥X(t)∥ → 0,
∥∥∥Ẋ(t)

∥∥∥ → 0 as t → ∞.

Let us denote V (t,X, Y ) by V (.), ∥X∥ + ∥Y ∥ by ∥Z∥ , ∥X∥2 + ∥Y ∥2 by

∥T∥2, D(t)A(t) by D(.) and dV (t,X,Y )
dt by V̇ (.).

Theorem 2.2. Let the all conditions of Theorem 2.1 hold. In addition, we assume
the following condition hold:

(v)
∥P1(.)∥ ≤ δ4 + δ5 ∥Z∥ , and ∥P2(.)∥ ≤ α3 + α4 ∥Z∥ ,
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where δ4, δ5, α3 and α4 are some positive constants. Then, all solutions of system
(2) are bounded, uniformly bounded and uniform-ultimately bounded.

Theorem 2.3. Let the all conditions of Theorem 2.1 hold. In addition, we assume
the following condition holds:

(vi) ∥P1(.)∥ ≤ θ1(t) + θ2(t) ∥Z∥ and ∥P2(.)∥ ≤ φ1(t) + φ2(t) ∥Z∥ for all t ≥ 0,
max θi(t) < ∞, maxφi(t) < ∞ and θ1(t), θ2(t), φ1(t), φ2(t) ∈ L1(0,∞),
where L1(0,∞) is the space of integrable functions in sense of Lebesgue .
Then, any solution (X(t), Y (t)) of system (2) with initial condition

X(0) = X0, Y (0) = Y0

satisfies

∥X(t)∥ ≤ K, ∥Y (t)∥ ≤ K

for all t ≥ 0, where K > 0 is a constant depending on B(t), D(t), θ1(t),
ϕ1(t), θ2(t), ϕ2(t), t0, X0, Y0 as well as on the functions P1(.) and P2(.).

The main tool to be used in proving these theorems is the following Lya-
punov function defined by

2V (.) =∥D(t)X −B(t)Y ∥2 + 2

1∫
0

⟨D(t)F (sX)−B(t)C(t)G(sX), X⟩ ds

+ 2

1∫
0

⟨C(t)G(sX), X⟩ ds− ⟨B(t)Y, Y ⟩. (3)

Before the proofs of Theorem 2.1, Theorem 2.2 and Theorem 2.3, we need the
following lemmas, which will be used in the proof of these theorems.

Lemma 2.1. Suppose that the conditions of Theorem 2.1 are satisfied. Then there
exist positive constants, say K1, K2 and K3, such that the Lyapunov function V of
(3) satisfies

K1∥T∥2 ≤ 2V (.) ≤ K2∥T∥2,
V (.) → +∞ as ∥T∥2 → ∞

and
d

dt
V (.) ≤ −K3∥T∥2,

for all X, Y ∈ Rn.

Proof. It is obvious that V (t, 0, 0) = 0. Applying the conditions of Lemma 2.1, it
follows that

2V (.) =∥D(t)X −B(t)Y ∥2 + 2

1∫
0

1∫
0

⟨{D(.)Jf (s1s2X)−B(t)C(t)Jg(s1s2X)}X,X⟩s1ds1ds2

+ 2

1∫
0

1∫
0

⟨C(t)Jg(s1s2X)X,X⟩s1ds1ds2 − ⟨B(t)Y, Y ⟩

≥2

1∫
0

1∫
0

⟨{D(.)Jf (s1s2X)−B(t)C(t)Jg(s1s2X) + C(t)Jg(s1s2X)}X,X⟩s1ds1ds2.
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By using the conditions of Theorem 2.1, we have

⟨{D(.)Jf (s1s2X)−B(t)C(t)Jg(s1s2X) + C(t)Jg(s1s2X)X,X}⟩ ≥ δ0∥X∥2

and
−⟨B(t)Y, Y ⟩ ≥ δ1∥Y ∥2.

Thereby, we see that

2

1∫
0

1∫
0

⟨{D(.)Jf (s1s2X)−B(t)C(t)Jg(s1s2X) + C(t)Jg(s1s2X)}X,X⟩s1ds1ds2

≥ δ0∥X∥2.
Hence, we get

2V (.) ≥ δ0∥X∥2 + δ1∥Y ∥2 ≥ K1∥Z∥2 for all X,Y ∈ Rn, (4)

where K1 = min{δ0, δ1}.
Next, it follows from (4) that V (.) = 0 if and only if ∥Z∥2 = 0, and V (.) > 0 if

∥Z∥2 ̸= 0, which implies that

V (.) → ∞ as ∥Z∥2 → ∞.

In a similar way, by Theorem 2.1 we have〈{
D(.)Jf (s1s2X)−B(t)C(t)Jg(s1s2X) + C(t)Jg(s1s2X)X,X

}〉
≤ ∆0 ∥X∥2 ,

− ⟨B(t)Y, Y ⟩ ≤ ∆1 ∥Y ∥2

and
∥D(t)X −B(t)Y ∥2 ≤ ∆∗∥Z∥2.

Thereby, we get

2

1∫
0

1∫
0

⟨{D(.)Jf (s1s2X)−B(t)C(t)Jg(s1s2X) + C(t)Jg(s1s2X)}X,X⟩s1ds1ds2

≤ ∆0∥X∥2.
Hence, it is clear that

2V (.) ≤ ∆∗∥Z∥2 +∆0∥X∥2 +∆1∥Y ∥2.
Let K2 = max{∆∗ +∆0,∆∗ +∆1}. Then,

2V (.) ≤ K2∥Z∥2, (5)

for all X,Y ∈ Rn. Consequently, from the inequalities (4) and (5), we have

K1∥Z∥2 ≤ 2V (.) ≤ K2∥Z∥2.
Next, we calculate the derivative of V with respect to t along the solutions of

system (2). Then, the derivative of the Lyapunov function V along solutions of
system (2) is obtained as follows:

d

dt
V (.) = ⟨D(t)X +A(t)F (X), D(t)A(t)F (X)−B(t)C(t)G(X)⟩

+ ⟨C(t)G(X), A(t)F (X)⟩ − ⟨B(t)D(t)Y, Y ⟩+ ⟨D(t)X,D′(t)X⟩
− ⟨B(t)Y,D′(t)X⟩+ ⟨B(t)Y,B′(t)Y ⟩
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− ⟨B′(t)Y,D(t)X⟩+ 1

2
⟨B′(t)Y, Y ⟩

=

1∫
0

1∫
0

⟨{D(t) +A(t)Jf (s1X)}

× {D(.)Jf (s2X)−B(t)C(t)Jg(s2X)}X,X⟩ds1ds2

+

1∫
0

1∫
0

⟨C(t)Jg(s1X)X,A(t)Jf (s2X)X⟩ ds1ds2

− ⟨B(t)D(t)Y, Y ⟩+ ⟨D(t)X,D′(t)X⟩ − ⟨B(t)Y,D′(t)X⟩+ ⟨B(t)Y,B′(t)Y ⟩

− ⟨B′(t)Y,D(t)X⟩+ 1

2
⟨B′(t)Y, Y ⟩ .

By the conditions of Theorem 2.1, we obtain

d

dt
V (.) ≤[−γ∗ − γ4 − δ3 − β2β0 +

∆1β0

2
+

α1β2

2
]∥X∥2

+ [
∆1β0

2
+

α1β2

2
+

1

2
β1 − δ1β1]∥Y ∥2

=− α∥X∥2 − β∥Y ∥2.

Thus, there exists a constant K3 = min{α, β} > 0 such that

V̇ ≤ −K3∥Z∥2,

for all X,Y ∈ Rn. This completes the proof of Lemma 2.1. □

Let P1(.) ̸= 0 and P2(.) ̸= 0.

Lemma 2.2. We assume that the conditions Theorem 2.2 hold. Then there exist
positive constants K6 and K7 such that

d

dt
V (.) ≤ −K6∥T∥2 +K8

√
∥T∥2 {∥P1(.)∥+ ∥P2(.)∥}

for all X,Y ∈ Rn.

Proof. Following the calculations in the proof of Lemma 2.1, we obtain

d

dt
V (.) =⟨D(t)X,D′(t)X +D(.)F (X) +D(t)P1(.),

−B′(t)Y −B(t)C(t)G(X)−B(t)P2(.)⟩
− ⟨B(t)Y,D′(t)X +D(t)P1(.)−B′(t)Y −B(t)P2(.)⟩
+ ⟨D(.)F (X), A(t)F (X) + P1(.))⟩
− ⟨B(t)C(t)G(X), A(t)F (X) + P1(.)⟩+ ⟨C(t)G(X), A(t)F (X) + P1(.)⟩

− ⟨B(t)Y,D(t)Y + P2(.)⟩ −
1

2
⟨B′(t)Y,C(t)G(X) +D(t)Y + P2(.)⟩

= ⟨D(t)X +A(t)F (X), D(.)F (X)−B(t)C(t)G(X)⟩
+ ⟨C(t)G(X), A(t)F (X)⟩ − ⟨B(t)Y,D(t)Y ⟩
+ ⟨D2(t)X +D(.)F (X)−B(t)C(t)G(X)

+ C(t)G(X)−B(t)D(t)Y, P1(.)⟩
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−
〈
B(t)D(t)X +B(t)Y −B2(t)Y − 1

2
B′(t)Y, P2(.)

〉
+ ⟨D(t)X,D′(t)X −B′(t)Y ⟩ − ⟨B(t)Y,D′(t)X −B′(t)Y ⟩

− 1

2
⟨B′(t)Y,C(t)G(X) +D(t)Y ⟩

=

1∫
0

1∫
0

⟨D(t)X +A(t)Jf (s1X)X,D(.)Jf (s2X)X −B(t)C(t)Jg(s2X)X⟩ ds1ds2

+

1∫
0

1∫
0

⟨C(t)Jg(s1X)X,A(t)Jf (s2X)X⟩ ds1ds2 − ⟨B(t)Y,D(t)Y ⟩

+

1∫
0

〈{
D2(t) +D(.)Jf (s1X)−B(t)C(t)Jg(s1X) + C(t)Jg(s1X)

}
X,P1(.)

〉
ds1

−
1∫

0

⟨B(t)D(t)Y, P1(.)⟩ ds1 +
〈
B2(t)Y −B(t)D(t)X −B(t)Y +

1

2
B′(t)Y, P2(.)

〉
+ ⟨D(t)X,D′(t)X −B′(t)Y ⟩ − ⟨B(t)Y,D′(t)X −B′(t)Y ⟩

− 1

2
⟨B′(t)Y,C(t)G(X) +D(t)Y ⟩

=

1∫
0

1∫
0

⟨{D(t) +A(t)Jf (s1X)} {D(.)Jf (s2X)−B(t)C(t)Jg(s2X)}X,X⟩ds1ds2

+

1∫
0

〈{
D2(t) +D(.)Jf (s1X)−B(t)C(t)Jg(s1X) + C(t)Jg(s1X)

}
X,P1(.)

〉
ds1

−
1∫

0

⟨B(t)D(t)Y, P1(.)⟩ ds1 +
1∫

0

1∫
0

⟨C(t)Jg(s1X)X,A(t)Jf (s2X)X⟩ ds1ds2

+

〈
B2(t)Y −B(t)D(t)X −B(t)Y +

1

2
B′(t)Y, P2(.)

〉
+ ⟨D(t)X,D′(t)X −B′(t)Y ⟩ − ⟨B(t)Y,D′(t)X −B′(t)Y ⟩

− 1

2
⟨B′(t)Y,C(t)G(X) +D(t)Y ⟩ − ⟨B(t)Y,D(t)Y ⟩

≤ − γ∗∥X∥2 − δ3∥Y ∥2 − γ4∥X∥2

+

1∫
0

〈{
D2(t) +D(.)Jf (s1X)−B(t)C(t)Jg(s1X) + C(t)Jg(s1X)

}
X,P1(.)

〉
ds1

−
1∫

0

⟨B(t)D(t)Y, P1(.)⟩ ds1 + ⟨D(t)X,D′(t)X −B′(t)Y ⟩

+

〈
B2(t)Y −B(t)D(t)X −B(t)Y +

1

2
B′(t)Y, P2(.)

〉
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− ⟨B(t)Y,D′(t)X −B′(t)Y ⟩ − 1

2
⟨B′(t)Y,C(t)G(X) +D(t)Y ⟩

≤
[
−K6 + π1 + 2−1(π2 + π3) + 4−1µ2

]
∥X∥2 +

[
−K6 + π2 + 2−1π3 + π4 + 4−1µ2

]
∥Y ∥2

+ {∆3 ∥X∥+∆2 ∥Y ∥} ∥P2(.)∥+ {γ2 ∥X∥+∆3 ∥Y ∥} ∥P1(.)∥

≤ −K∗∥T∥2 +K7 ∥Z∥ {∥P1(.)∥+ P2(.)} ,
where

K6 = min {γ∗, δ3, γ4} ,K7 = max {γ2,∆2,∆3} ,
K∗ = max

{(
−K6 + π1 + 2−1(π2 + π3) + 4−1µ2

)
,
(
−K6 + π2 + 2−1π3 + π4 + 4−1µ2

)}
.

However, since

∥Z∥ ≤
√

2∥T∥2,
we have

d

dt
V (.) ≤ −K6∥T∥2 +K8

√
∥T∥2 {∥P1(.)∥+ ∥P2(.)∥} ,

where K8 =
√
2K7, for all t ≥ 0. This completes the proof of Lemma 2.2. □

Let P1(.) ≡ 0 and P2(.) ≡ 0 in (1).
Proof of Theorem 2.1. The proof is similar to that of Adeyanju et al. [6,

Theorem 3.1]. We leave out the proof.
Proof of Theorem 2.2. The proof is similar to that of Adeyanju et al. [6,

Theorem 3.2]. We will ignore the proof.
Proof of Theorem 2.3. The proof is similar to that of Adeyanju et al. [6,

Theorem 3.3]. We will not provide the proof.
We will now give two examples to show that the conditions of the given theorems

can be hold in particular cases.

Example 1. For the case n = 2, we consider the following system as a particular
case of (2):

A(t) =

(
0.1 0
0 0.2

)
, B(t) =

(
−0.21 0

0 −1.1

)
, C(t) =

(
0.101 0
0 0.102

)
,

D(t) =

(
−0.011 0

0 −0.0011

)
, F (X) =

(
arctanx1 − 1.02x1

−0.101x2

)
,

G(X) =

(
− cosx1 + 1.2x1

− cosx2 + 1.2x2

)
,

Jf (X) =

( 1
1+x2

1
− 1.02 0

0 −1.101

)
,

Jg(X) =

(
sinx1 + 1, 2 0

0 sinx2 + 1.2

)
,

X =

(
x1

x2

)
, Ẋ

(
ẋ1

ẋ2

)
, Y =

(
y1
y2

)
, Ẏ =

(
ẏ1
ẏ2

)
.

Then, we have the following system of scalar differential equations:

ẋ1 = 0.1 arctanx1 − 0.102− 0.21y1,

ẋ2 = 0.0202x2 − 1.1y2,

ẏ1 = −0.101 cosx1 + 0.1212− 0.0011y1,

ẏ2 = −0.102 cosx2 + 0.1224− 0.0011y2.
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Hence, we have
D(t)A(t)Jf (X)−B(t)C(t)Jg(X)

=

(−0.0011
1+x2

1
+ 0.02121 sinx1 + 0.026574 0

0 0.1122 sinx2 + 0.13488222

)
and

{B(t)C(t)Jg(X)−D(t)A(t)Jg(X)} {D(t) +A(t)Jf (X)}

=

(
[ 0.0011
1+x2

1
− 0.02121 sinx1 − 0.026574][ 0.1

1+x2
1
− 0.113] 0

0 0.02482986 sinx2 + 0.0298494353

)
,

where

δa = 0.1,∆a = 0.2, δb = −1.1,∆b = −0, 21, δc = 0.101,∆c = 0.102,

δd = −0.011,∆d = −0.0011, δf = −1.02,∆f = −0.02,

δg = 1.2,∆g = 2, 2, δa∗ = 0.004264,∆a∗ = 0.24708222,

δb∗ = 0.0002959762,∆b∗ = 0.0546792953.

Hence, the conditions of Theorem 2.1 hold.

Let P1(.) ̸= 0 and P2(.) ̸= 0.

Example 2. We consider the Example 1, which also includes the following terms
additionally:

P1(.) =
1[

2t2 + (x1 + y1)
2
+ (x2 + y2)

2
+ 2

]2 (
x1 + y1
x2 + y2

)
,

P2(.) =
1

[e2t + 2]
2

(
x1 + y1 cosx1

x2 + y2 cosx2

)
.

No need to reconsider the discussion in Example 1. In addition the outcomes of
Example 1, we have the following relations:

∥P1(.)∥ ≤ 1[
2t2 + (x1 + y1)

2
+ (x2 + y2)

2
+ 2

]√(x1 + y1)
2
+ (x2 + y2)

2

≤
√
2

(t2 + 1)

√
x2
1 + y21 + x2

2 + y22 + 2

≤
√
2

(t2 + 1)

√
∥X∥2 + ∥Y ∥2 + 2

≤
√
2

(t2 + 1)

{
∥X∥+ ∥Y ∥+

√
2
}

≤ 2

(t2 + 1)
+

√
2

(t2 + 1)
{∥X∥+ ∥Y ∥}

=θ1(t) + θ2(t) {∥X∥+ ∥Y ∥}

≤2 +
√
2 {∥X∥+ ∥Y ∥} ,

where θ1(t) =
2

t2+1 ≤ 2 ≤ δ0 and θ2(t) =
√
2

t2+1 ≤
√
2 ≤ δ1;

Similarly, we have

∥P2(.)∥ ≤ 1

[e2t + 2]

√
(x1 + y1 cosx1)

2
+ (x2 + y2 cosx2)

2
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≤ 1

(e2t + 2)

√
2(x2

1 + y21 + x2
2 + y22) + 4

≤
√
2

(e2t + 2)

√
x2
1 + y21 + x2

2 + y22 + 2

≤
√
2

(e2t + 2)

√
∥X∥2 + ∥Y ∥2 + 2

≤
√
2

(e2t + 2)

{
∥X∥+ ∥Y ∥+

√
2
}

≤ 2

(e2t + 2)
+

√
2

(e2t + 2)
{∥X∥+ ∥Y ∥}

=φ1(t) + φ2(t) {∥X∥+ ∥Y ∥}

≤2 +
√
2 {∥X∥+ ∥Y ∥} ,

where θ1(t) =
2

e2t+2 ≤ 2 ≤ α0 and θ2(t) =
√
2

e2t+2 ≤
√
2 ≤ α1.

Thus, all the conditions of Theorems 2.1 and Theorem 2.2 are satisfied by this
example.
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