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FUZZY EFFECT ALGEBRAS AND DECOMPOSITION

THEOREMS

SARVESH K. MISHRA, MUKESH K. SHUKLA, *AKHILESH K. SINGH

Abstract. This paper delves the concept of charges on fuzzy effect algebras

(FEAs). We explore the fundamental properties of charges on FEAs, providing
a comprehensive analysis with its suitable examples. The space of all bounded

charges on FEAs has also been explored. We prove Jordan decomposition

theorem for charges on FEAs. Finally, we also prove Hahn decomposition
theorem for charges defined on FEAs.

1. Introduction

Effect algebras intoduced by Bennett and Foulis [4] are an innovative class of
mathematical structures that contains the essence of quantum mechanics and offers
a framework for modeling quantum observables and their partial order relations.
FEAs are a fast-growing topic that emerged from the combination of effect algebras
with fuzzy set theory. FEAs were motivated by the need for greater flexibility
in the applicability of effect algebras to scenarios with inherent uncertainty and
imprecision. This combination not only extends the reach of effect algebras but
also overcomes the difficulties presented by indefinite real-world systems.

Decomposition theorems demonstrate themselves to be effective instruments for
analysing the structure and behaviour of complex mathematical objects. These the-
orems offer an approach of dividing complex structures into simple parts, highlight
hidden patterns, and provide significant new insights of the underlying mechanisms
directing an individual mathematical discipline. The French mathematician C.
Jordan introduced the Jordan decomposition theorem which states that the signed
measure µ admits a unique decomposition into a difference µ = µ+ − µ− of two
positive measures, at least one of which is finite, and such that for any Hahn de-
composition Ω+ ∪ Ω− and measurable set A, if A ⊆ Ω− then µ+(A) = 0 and if
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A ⊆ Ω+ then µ−(A) = 0; for different type of decomposition theorems on different
spaces, see ([2], [8-9], [11], [13-15] and [20]). This theorem finds applications in
diverse fields such as quantum mechanics, control theory, and numerical analysis.
An important finding which provides an approach to separate the space of a signed
measure into positive and negative sections is the Hahn decomposition Theorem
[9]. This theorem, developed by the German mathematician Hahn, is important
for understanding the theory of integration and probability and also important for
understanding the structure of measures. When a measure includes both positive
and negative values, the Hahn Decomposition theorem helps us to determine the
positive and negative components in a structured and efficient way. It also of-
fers a simple and comprehensible division of the measure’s positive and negative
contributions.

In the present paper, we have introduced the concept of charges on FEAs. We
prove Jordan and Hahn decomposition theorems in the context of FEAs as our
main contribution.

The manuscript is organized as follows: Section 2 contains basics of effect alge-
bras and FEAs. In section 3, charges are introduced on FEAs and a few examples
are also given. Section 4 introduces and investigates properties of the space of all
bounded charges on FEAs. In section 5, we prove Jordan decomposition theorem
and in section 6, Hahn decomposition theorem is proved on FEAs. Section 7 is the
conclusion of the paper.

2. Basic concepts

In this section, we introduce some basic concepts, definitions and results from
FEAs.

2.1. Fuzzy effect algebras. An effect algebra (introduced by D. J. Foulis and M.
K. Bennett [4]) is a system (E,⊕, 0E , 1E), where E is a set, 0E and 1E are special
elements of E, called the zero and the unit, and ⊕ is a partially defined binary
operation on E such that for f, g, h ∈ E the following axioms are assumed:

(i) If f ⊕ g is defined, then g ⊕ f is defined and f ⊕ g = g ⊕ f (Commutative
law).

(ii) If g⊕ h is defined and f ⊕ (g⊕ h) is defined, then f ⊕ g and (f ⊕ g)⊕ h are
defined and f ⊕ (g ⊕ h) = (f ⊕ g)⊕ h (Associative law).

(iii) For every f ∈ E there exists a unique elements g ∈ E such that f ⊕ g is
defined and f ⊕ g = 1E (Orthosupplement law).

(iv) If f ⊕ 1E is defined, then f = 0E (Zero-one law).
In every effect algebra E, a dual operation ⊖ to ⊕ can be defined as follows:

f ⊖ h exists and equals g ⇐⇒ g ⊕ h exists and equals f . Two elements f, g ∈ E
are said to be orthogonal and written as f ⊥ g, if f ⊕ g exists. If f ⊕ g = 1, then
g is orthocomplement of f and write g = f⊥. Obviously 1⊥ = 0, (f⊥)⊥ = f , f ⊥ 0
and f ⊕ 0 = f , for all f ∈ E. Also for f, g ∈ L, define f ≤ g if there exists h ∈ E
such that f ⊥ h and f ⊕ h = g. Observe that ≤ is a partial ordering on E and
0 ≤ f ≤ 1; f ≤ g ⇔ g⊥ ≤ f⊥ and f ≤ g⊥ ⇔ f ⊥ g for f, g ∈ E. If f ≤ g, the
element h ∈ E such that h ⊥ f and f ⊕ h = g is unique, and satisfies the condition
h = (f ⊕ g⊥)⊥. We write it as h = g ⊖ f .

For f1, . . . , fn ∈ E, define f1 ⊕ . . . ⊕ fn = (f1 ⊕ . . . ⊕ fn−1) ⊕ fn inductively,
provided that the right hand side exists (it is independent on permutation of the
elements). A finite subset {f1, . . . , fn} of E is said to be orthogonal if f1 ⊕ . . .⊕ fn
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exists. A sequence {fn} in E is called orthogonal if, for every n,
⊕

i⩽n fi exists. If,

moreover supn
⊕

i⩽n fi exists, the sum
⊕

n∈N fn of an orthogonal sequence {fn}
in E is defined as supn

⊕
i⩽n ai. An effect algebra L is called a σ-complete effect

algebra if every orthogonal sequence in E has its sum. If (E,≤) is a lattice, we
say that effect algebra E is a lattice effect algebra. For more literature on effect
algebras, see ([2-5], [7], [10], [12] and [16-19]).

An effect algebra E can be mapped to another effect algebra H through a map
ϕ that preserves the structure of effect algebras, a property referred to as EA-
structure. Such a map is known as an EA-homomorphism. Consider the closed
unit interval I with its typical EA-structure, where the operation f ⊕ g is defined
whenever f + g ≤ 1 and in such cases, f ⊕ g is simply f + g. Hence, the system
(I,+, 0, 1) forms an effect algebra. Similarly, if E is a set and IE represents the
collection of all functions from E into I, then IE can be treated as an effect algebra
with a partial operation ⊕E defined point-wise. Specifically, f ⊕E g exists if and
only if f(x)+g(x) ≤ 1 for all x ∈ E and it is given by (f ⊕E g)(x) = f(x)+g(x) for
each x ∈ E. A subset E ⊂ IE that includes the constant functions 0E and 1E and is
closed under the inherited partial operation ⊕E constitutes an effect algebra known
as the effect algebra of fuzzy sets or simply fuzzy effect algebras, see [17]). In general,
E is assumed to denote the system (E ,⊕E , 0E , 1E) throughout the manuscript. We
denote by N the set of all positive integers and by R the set of real numbers. Hence
we can consider the following effect algebra as an example of FEAs:

Example 2.1. Let X ̸= ϕ be a set and let E ⊆ [0, 1]X . We call E a fuzzy set system
on X if

(i) 0, 1 ∈ E,
(ii) f ∈ E then 1− f ∈ E,
(iii) f, g ∈ E with f + g ⩽ 1 then f + g ∈ E.
The system E represents a fuzzy effect algebra when f⊕E g = f+g for f+g ⩽ 1.

3. Charges on fuzzy effect algebras

In this section we shall introduce the concept of charges on FEAs E . They
are usually said as finitely additive measures in the literature, which arise quite
naturally in many areas of science and engineering and have been widely used by
mathematicians and statisticians over the years. The main idea of the paper has
been taken from Rao and Rao [6].

Definition 3.1. A map m : E → [−∞,∞] is said to be charges on E if
(i) m(0) = 0;
(ii) m(f ⊕E g) = m(f) +m(g) whenever f ⊥ g, f, g ∈ E .

If m is a charge on E , it can not take both the value +∞ and −∞. For if
f, g ∈ E , such that m(f) = ∞ and m(g) = −∞. Then m(1) = m(f ⊕E f⊥) = ∞ =
m(g⊕E g

⊥) = −∞, which is a contradiction. Following is a example of a charge on
E .

Example 3.1. Let us consider the lattice effect algebra E = {0, a, b, c, 1} where we
define : a ⊕ b = b ⊕ a = c, b ⊕ c = c ⊕ b = a ⊕ a = 1 and let x ⊕ 0 = 0 ⊕ x for
all x ∈ E. Define the function m : E → [0, 1] as follows: m(x) = 0 if x ∈ {c, b},
m(x) = 1/2 if x ∈ {0, a}, and m1(1) = 1. Then m is a charge on E.
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Definition 3.2. Let m be a charges on a σ−complete FEA E. The charge m is
said to be s-bounded (called exhaustive in [14]) if for every sequences {fn}n ≥ 1 of
mutually orthogonal elements in E, limn → ∞m(fn) = 0.

Note that if m is a real charge for every f ∈ E (that is, m takes values in
(−∞,∞)) then m is s-bounded on E if and only if sup{|m(f)|; f ∈ L} < ∞.
Consider the following example from [14]:

Example 3.2. Consider the effect algebra E = {0, 1, 1
2 ,

1
3 , ...,

1
p , ...}, where we de-

fine: for each 1
p , 0 ⊕

1
p = 1

p ,
1
p ⊕ 1

p = 1, 0 ⊕ 1 = 1 and if p ̸= q, 1
p ⊕ 1

q cannot be

defined. Consider the function m : E → [0, 1] defined by m(x) = 1 if x = 1, and
otherwise m(x) = 0. Then m is s-bounded on E.

Lemma 3.1. Let m be a real charges on a σ−complete FEA E. If m is unbounded,
there exist f1, f2 ∈ E satisfying

(i) f1 ⊥ f2;
(ii) |m(f1)| ≥ 1 and |m(f2)| ≥ 1;
(iii) m is unbounded either on f1 or on f2 in E i.e. sup{|m(g)| : g ≤ f1, g ∈

E} = ∞ or sup{|m(h)| : h ≤ f2, h ∈ L} = ∞.

Proof. Since is m is s-bounded, there exists g1 ∈ E such that |m(g1)| ≥ |m(1)|+ 1.
Then |m(g⊥1 )| = |m(1 ⊖E g)| = |m(1) − m(g)| ≥ ||m(1)| − |m(g1)|| ≥ |m(g1)| −
|m(1)| ≥ 1. It is clear that m is unbounded either on g1 or on g⊥1 . Let us take
f1 = g1 and f2 = g⊥1 . Clearly |m(f1)| ≥ 1, |m(f2)| ≥ 1. □

Theorem 3.1. Let m be a real but unbounded charge on a σ−complete fuzzy effect
algebra E. Then there exist a sequence {fn}, n ≥ 1 of mutually orthogonal element
from E such that |m(fn)| ≥ 1 for every n ≥ 1.

Proof. By Lemma 3.1, there exists f1, g1 ∈ E such that f1 ⊥ g1 with |m(f1)| ≥
1, |m(g1)| ≥ 1 and m is unbounded on g1. Applying Lemma 3.1, again on g1, there
exists f2, g2 ∈ E such that f2 ≤ g1, g2 ≤ g1 and f2 ⊥ g2 with |m(f2)| ≥ 1, |m(g2)| ≥
1 and m is unbounded on g2. Repeating the process, we obtain a sequence {fn}n≥1

of mutually orthogonal elements from E such that |m(fn)| ≥ 1, for every n. □

Theorem 3.2. Let m be a real charge on σ−complete FEA E. Then m is s-bounded
on E if and only if m is bounded on E.

Proof. Let m be bounded on E . Let k = sup{|m(g)| : g ∈ E}, Then k is finite.
Let {fn}n≥1 be any sequence of mutually orthogonal elements in E . Let m ≥ 1 be
fixed. Let S1 = {1 ≤ i ≤ m;m(fi) ≥ 0} and S2 = {1 ≤ i ≤ m;m(fi) ≤ 0}. Then

m∑
i=1

|m(fi)| =
∑
i∈S1

m(fi)−
∑
j∈S2

m(fj)

= m(⊕i∈S1Efi)−m(⊕j ∈ S2Efj) ≤ 2k.

Hence
∑

i≥1 |m(fi)| ≤ 2k. It gives that limn→∞ m(fn) = 0. So m is s-bounded
on E . □

Conversely, let m is s-bounded on E but not bounded on E . By Theorem 3.1,
there exist a sequence {fn}n ≥ 1 of mutually orthogonal elements in E such that
|m(fn)| ≥ 1 for every n ≥ 1. Thus given that limn→∞ m(fn) ̸= 0. Contradicting
the fact that m is s-bounded on E .
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4. The space BA(E) of all bounded charges

The space of all bounded charges defined on an effect algebras E is denoted
by BA(E). A natural ordering ” ≤ ” on BA(E) can be defined as: for m,n ∈
BA(E),m ≤ n if m(f) ≤ n(f);∀f ∈ E . It can be proved that the relation ” ≤ ” is
reflexive, anti-symmetric and transitive i.e ” ≤ ” is a partial order on E . Throughout
this section we shall assume that E be a lattice FEA satisfying the conditions:

(A1) g ∧ (f1 ⊕ f2) = (g ∧ f1)⊕ (g ∧ f2) for f1, f2, f1 ⊥ f2, g ∈ E ;
(A2) If f1, f2, f1 ⊥ f2, g1, g2, g1 ≤ f1, g2 ≤ f2, g ∈ E , then (f1 ⊕ f2)⊖ (g1 ⊕ g2) =

(f1 ⊖ g1)⊕ (f2 ⊖ g2).

Theorem 4.3. Let E be a lattice FEA satisfying the conditions (A1) and (A2).
Then following statements are true:

(i) If m1,m2 ∈ BA(E), then cm1 + dm2 ∈ BA(E), where c, d ∈ R;
(ii) Let m1,m2 ∈ BA(E). Define λ on E by λ(g) = sup{m1(f)+m2(g⊖E f); f ≤

g, f, g ∈ E}. Then λ ∈ BA(E);
(iii) Let m1,m2 ∈ BA(E). Then m1 ∨m2 exists and m1 ∨m2 = λ on BA(E);
(iv) Let m1,m2 ∈ BA(E). Define τ on L as τ(g) = inf{m1(f)+m2(g⊖E f); f ≤

g, f, g ∈ E}.Then τ ∈ BA(E);
(v) Let m1,m2 ∈ BA(E). Then m1 ∧m2 exists and m1 ∧m2 = τ on BA(E).

Proof. The proof of (i) is obvious.
(ii) Clearly λ(0) = 0. Since m1 and m2 are bounded on E , λ is bounded function

on E . Let f1, f2 ∈ E such that f1 ⊥ f2. Let g ∈ BA(E) such that g ≤ f1 ⊕E f2
and let g1 ≤ f1 (we may choose g1 = g ∧ f1, g1 ∈ E) and g2 ≤ f2 (we may choose
g2 = g ∧ f2, g2 ∈ E). Then

m1(g) +m2[(f1 ⊕E f2)⊖E g] = m1(g1 ⊕E g2) +m2[(f1 ⊖E g1)⊕E (f2 ⊖E g2)]

= m1(g1) +m2(f1 ⊖E g1) +m1(g2) +m2(f2 ⊖E g2) ≤ λ(f1) + λ(f2)

(as g = g1 ⊕ g2, g1, g2 ∈ E). Taking supremum over all g ≤ f1 ⊕E f2 in E , we get
λ(f1 ⊕E f2) ≤ λ(f1) + λ(f2). Also,

[m1(g1) +m2(f1 ⊖E g1)] + [m1(g2) +m2(f2 ⊖E g2)]

= m1(g1 ⊕E g2) +m2[(f1 ⊕E f2)⊖E (g1 ⊕E g2)] ≤ λ(f1 ⊕E f2).

Now taking supremum over all g1 ≤ f1, g ∈ E and g2 ≤ f2, g2 ∈ E , we get

λ(f1) + λ(f2) ≤ λ(f1 ⊕E f2).

Thus, we have λ(f1 ⊕E f2) = λ(f1) + λ(f2). Hence λ ∈ BA(E).
(iii) It is clear that m1 ≤ λ,m2 ≤ λ. Let m ∈ BA(E) be such that m1 ≤

m,m2 ≤ m. Then for any g ∈ E ,

λ(g) = sup{m1(f) +m2(g ⊖E f) : f ≤ g, f ∈ E}

≤ sup{m(f) +m(g ⊖E f) : f ≤ g, f ∈ E} = m(g).

Hence λ ≤ m. Consequently m1 ∨m2 exists in E and m1 ∨m2 = λ.
(iv) Proof is similar as (ii).
(v) Proof is similar as (iii). □
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5. Jordan decomposition theorem for charges on fuzzy effect
algebras

Definition 5.3. Let E be a lattice FEA. Let m1 and m2 be two charges on E.
Define λ and τ on E by

(i) λ(g) = sup{m1(f) +m2(g ⊖E f); f ≤ g, f, g ∈ E};
(ii) τ(g) = inf{m1(f) +m2(g ⊖E f); f ≤ g, f, g ∈ E}.

Recall from the Theorem 4.3 that if either both m1 and m2 do not take +∞ or
both m1 and m2 do not take −∞, then λ = m1 ∨m2 and τ = m1 ∧m2 are charges
on E . This definition is consistent with the definitions used in (ii) and (v) of the
Theorem 4.3.

Theorem 5.4. (Jordan decomposition theorem). Let E be a lattice FEA satisfying
the conditions (A1) and (A2) and let m be a charge on E. Define m+ and m− by

m+(f) = sup{m(g) : g ≤ f, g ∈ E}, f ∈ E
and

m−(f) = − inf{m(g); g ≤ f, g ∈ E}, f ∈ E .
Here m+ and m− are the positive and negative variations of m on E, respectively.

We have the following properties:
(i) m+ and m− are positive charges on E;
(ii) If m ̸= +∞, then m+ −m = m−;
(iii) If m ̸= −∞, then m+m− = m+;
(iv) If m ̸= +∞ and m1 −m = m2 for some positive charges m1 and m2 on E,

then m1 ≥ m+,m2 ≥ m−;
(v) If m ̸= −∞ and m+ λ1 = λ2 for some positive charges λ1 and λ2 on E then

λ1 ≥ m− and λ2 ≥ m+;
(vi) m = m+ −m− if and only if m is either bounded below or bounded above;
(vii) m+ ∧m− = 0 if and only if m is either bounded below or bounded above;
(viii) If m1 and m2 are positive charges on E such that m = m1 − m2 and

m1 ∧m2 = 0, then m1 = m+ and m2 = m−;
(ix) If m is a real charge on E then m = m+ − m− holds if and only if m is

bounded. In this case, both m+ and m− are bounded.

Proof. (i) From Definition 5.3, observe that: m+ = m∨ 0 and m− = (−m)∨ 0 and
hence m+ and m− are charges on E .

(ii) Let g ∈ E . Suppose m(g) = −∞. Then from definition of m−, m−(g) = ∞.
Therefore m+(g)−m(g) = ∞ = m−(g). Let us suppose that m(g) > −∞. By the
assumption, −∞ < m(g) < ∞. Consequently, −∞ < m(f) < ∞ for any f ∈ E
such that f ≤ g. By the Theorem 4.3 we have,

m+(g)−m(g) = sup{m(f) : f ≤ g, f ∈ E} −m(g),

= sup{m(f)−m(g) : f ≤ g, f ∈ E}
= sup{−m(g ⊖E f) : f ≤ g, f ∈ E}

= − inf{m(h) : h ≤ g, h ∈ E} = m−(g).

(iii) Proof is similar as (ii).
(iv) Since m1−m = m2 and m1 and m2 are positive charges on E , we have m1 ≥

m, so for any g ∈ E , m+(g) = sup{m(f); f ≤ g, f ∈ L} ≤ m1(g). Hence m+ ≤ m1.
For second part, note that m+ −m ≤ m1 −m = m2. By (ii) m+ −m = m−.
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(v) Proof is similar as (iv).
(vi) Let m be bounded above. By (ii), m+ − m = m−, and m+ is a bounded

charge on E , hence −m = m− − m+ or m = m+ − m−. Logic is similar for the
case m is bounded below on E . Conversely, if m = m+ − m−, then either m+ is
bounded or m− is bounded. In previous case m is bounded above and later it is
bounded below.

(vii) Let m be bounded below. Then m− is positive bounded charge on E . So,
for any f ∈ E ,

(m+ ∧m−)(g) = inf{m+(f) +m−(g ⊖E f) : f ≤ g, f ∈ E}

= inf{m(f) +m−(f) +m−(g ⊖E f) : f ≤ g, f ∈ E};

= inf{m(f) +m−(g) : f ≤ g, f ∈ E};

= inf{m(f) : f ≤ g, f ∈ E}+m−(g) = −m−(g) +m−(g) = 0

(since m− is bounded).
Similarly, we can prove that if m is bounded above the m+ ∧m− = 0.
Conversely, let us suppose that m is neither bounded below nor bounded above.

Without loss of generality, we can assume that m does not take value −∞.
Note that m−(1) = ∞, By (iii), m+m− = m+, so

(m+ ∧m−)(1) = [(m+m−) ∧m−](1)

= inf{(m+m−)(g) +m−(g⊥) : g ≤ 1, g ∈ E}

= inf{m(g) +m−(1) : g ∈ E} = ∞ ⇒ m+ ∧m− ̸= 0.

This completes the proof.
(viii) If m = m1 −m2, where m1 and m2 are positive charges, then m is either

bounded below or bounded above (from (vi)). Let us assume m is bounded above,
which yield that m is a bounded charge. Since m = m1 − m2 = m+ − m−, we
have m1 −m+ −m2 = −m− ≤ 0. Therefore, m1 −m+ ≤ m2. By (iv), m1 ≥ m+,
so 0 ≤ m1 − m+ ≤ m2. Since m1 ∧ m2 = 0 and 0 ≤ m1 − m+ ≤ m1, it gives
that 0 ≤ m1 −m+ ≤ m1 ∧m2 = 0. Thus m1 = m+. Similarly we can prove that
m2 = m−.

(ix) If m is a real charge and m = m1 − m2, where m1 and m2 are positive
charges, then m1 and m2 are bounded. Hence m is bounded. If m is bounded,
definitely m can be written as a difference of two positive charges on E . □

6. Hahn decomposition theorem for charges on fuzzy effect algebras

Definition 6.4. Let E be a FEA and m is a charge on E. Let ϵ > 0. Then
a partition {f, f⊥} of 1 is said to be ϵ-Hahn decomposition of m if the following
conditions are satisfied:

(i) g ∈ L, g ≤ f ⇒ m(g) ≤ ϵ,
(ii) h ∈ L, h ≤ f⊥ ⇒ m(h) ≥ −ϵ.

Theorem 6.5. (Hahn decomposition theorem). Let E be a lattice FEA satisfying
the conditions (A1) and (A2) and let m be a charge on a FEA E , which is either
bounded below or bounded above. Then for any ϵ > 0, there exists a ϵ-Hahn decom-
position of m. If m is neither bounded below nor bounded above, there exists ϵ > 0
for which there is no ϵ−Hahn decomposition of m.
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Proof. Let m is bounded below. Let d = inf{m(g) : g ∈ E}. Then d is a finite
number. Let ϵ > 0, we can find f ∈ L such that d ≤ m(f) ≤ d + ϵ, which gives
that −∞ < m(f) < ∞ and for any g ∈ L, g ≤ f , we have −∞ < m(g) < ∞.
So d ≤ m(f ⊖E g) = m(f) − m(g) ≤ d + ϵ − m(g), giving m(g) ≤ ϵ. Now let
h ∈ L, h ≤ f⊥. Then h ⊥ f . Also, d ≤ m(h⊕E f) = m(h) +m(f) ≤ m(h) + d+ ϵ.
Hence m(h) ≥ −ϵ. This prove that the first part of the theorem.

The statement, that is admits ϵ−Hahn decomposition for every ϵ > 0 is equiv-
alent to the statement that m+ ∧m− = 0 (by (vi) and (vii) of the Theorem 5.4)
which is equivalent to the statement that m is either bounded below or bounded
above by the Theorem 5.4. □

7. Conclusion

The present paper deals with the notion of charges (which also have been called
finitely additive measures in literature, see [6]) on FEAs and its application in
obtaining the decomposition theorems on FEAs. Jordan decomposition theorem
and Hahn decomposition theorem for charges on FEAs have also been achieved.
The theory of fuzzy sets [21] and intuitionistic fuzzy sets [1], which have applications
in many different domains including pattern detection and decision making, might
gain attention significantly from this introduction of charges and decomposition
theorems on FEAs.
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