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UNIQUENESS OF MEROMORPHIC FUNCTIONS THAT SHARE
VALUES IM WITH THEIR DERIVATIVES

B. SAHA, S. PAL

ABSTRACT. In this paper, we investigate the problem of uniqueness of mero-
morphic functions sharing two values IM(Ignoring Multiplicities) with their
derivatives. Some examples are provided to show the sharpness of the re-
sult. The obtained result improves and generalizes the corresponding result
from [S. Chen and A. Xu, Uniqueness of derivatives and shifts of meromorphic
functions, Comput. Methods Funct. Theory, 22 (2022), 197-205].

1. INTRODUCTION, DEFINITIONS AND RESULTS

Let f(z) be a nonconstant meromorphic function in the whole complex plane. We shall
use the following standard notations of Nevanlinna theory, for instance T'(r, f), m(r, f),
N(r, f), N(r, f) (see [5, 10, 15]). We denote by S(r, f) any quantity satisfying S(r, f) =
o{T(r, f)} as (r = oo,r € E), where E denotes any set of positive real numbers having
finite linear measure. The hyper order of f is defined as follows

logTlogtT(r, f)
logr '

Let k be a positive integer or infinity and a € CU{oo}. Set E(a, f) = {z: f(z) —a = 0},
where a zero with multiplicity k is counted k times. If the zeros are counted only once, then
we denote the set by E(a, f). Let f and g be two non-constant meromorphic functions.
If E(a, f) = E(a,g), then we say that f and g share the value a CM (Counting Multi-
plicities). If E(a, f) = E(a,g), then we say that f and g share the value a IM (Ignoring
Multiplicities). We denote by Ey)(a, f) the set of all a-points of f with multiplicities not
exceeding k, where an a-point is counted according to its multiplicity. Also we denote by
Ek)(a, f) the set of distinct a-points of f with multiplicities not exceeding k. In addition,
we need the following definitions.

P2 (f) = limsupr—co
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Definition 1.1. [8] Let a € CU {oo}. We denote by N(r,a; f) the counting function of
simple a-points of f and N(r,a; f) denote the corresponding reduced counting function.
For a positive integer k we denote by Nyy(r,a; f) the counting function of those a-points
of f (counted with proper multiplicities) whose multiplicities are not greater than k. By
Nyy(r,a; f) we denote the corresponding reduced counting function. Let N (r;a; f) be
the counting function of zeros of f — a with multiplicity at least k and N(k(r, a; f) the
corresponding one for which multiplicity is not counted.

Definition 1.2. [9] Let k be a positive integer or infinity. We denote by Ni(r,a; f) the
counting function of a-points of f, where an a-points of multiplicity m is counted m times
if m <k and k times if m > k. Then

Ni(r,a; f) = N(r,a; f) + Na(r, a5 f) + . + Ni(r, a5 f).

Clearly Ni(r,a; f) = N(r,a; f).

As we know, Nevanlinna theory plays an important role in the study of complex dif-
ferential equations and complex difference equations, (see[l, 2, 10, 14]). Recently, many
papers have focused on the study of complex differential-difference equations (called DDE
for short), (see [6, 11]) and so on.

For the DDE f'(2) = f(z + ¢), X. Qi, L. Yang [12] considered the uniqueness problem
between f’(z) and f(z + ¢) of meromorphic functions f(z) in view of Nevanlinna theory
and obtained the following result.

Theorem A. [12] Let f(z) be a transcendental entire function of finite order and a(#
0) € C. If f'(2) and f(z + c) share 0,a CM, then f'(z) = f(z +c).

To further improve Theorem A, a more general question could be posed as follows:

could we determine the relationship between the k-th derivative f<k)(z) and the shift
f(z 4 ¢) of a meromorphic (or entire) function f(z) under more general sharing value
conditions?
In 2021, S. Chen and A. Xu [3] proved a uniqueness theorem about the k-th derivative
f®(2) and the shift f(z+ ¢) of a meromorphic function f(z) with two CM sharing values
and one IM sharing value, which greatly generalizes and improves Theorem A. Their result
can be stated as follows.

Theorem B. [3] Let f(z) be a non-constant meromorphic function of hyper order p2(f) <
1, ¢ be a non-zero finite complex number, and k be a positive integer. If f*)(2) and f(z+c)
share 0,00 CM and 1 IM, then f*(2) = f(z + ¢).

Regarding Theorem B it is natural to ask the following questions.

Question 1.1. What will happen if we replace the function f& by the function L(f),
where L(f) is defined as follows L(f) = arf® + ar_1f* ™V + ..+ a1 f + aof,ar(#
0),ak_1, ..,a1,a9 € C.

Question 1.2. [s it possible to relax the nature of sharing in Theorem B?
In this paper, we continue to study the above questions. We shall prove a unique-

ness theorem with two IM sharing, which would generalize and improve Theorem B. The
following theorem is the main result of the paper.

Theorem 1.1. Let f(z) be a transcendental meromorphic function of hyper order strictly
less than 1 and let a,b be two distinct finite values. If f(z+c) and L(f) share a,b IM and
N(r,a; f) + N(r,00; f) = S(r, f), then f(z + ¢) = L(f).

Remark 1. It is easy to see that the condition N(r,a;f) + N(r,00;f) = S(r,f), in
Theorem 1.1 is necessary by the following examples.



EJMAA-2025/13(1) UNIQUENESS OF MEROMORPHIC FUNCTIONS THAT SHARE 3

Example 1.1. Let f(z) = ——25 and a = 0,b = 1, then for ¢ = i, f(z + ¢) and L(f)

share the value 0,1 IM but f(z + c) Z L(f) because N(r,a; f) + N(r,00; f) # S(r, f).

Example 1.2. Let f(z) = sinz, then for suitable values of a,b,c, f(z+c) and L(f) share
the value a,b IM but f(z + c¢) £ L(f).

Remark 2. From the condition of Theorem 1.1 and f(z+ c) Z L(f), we have S(r, f(z +
) = S(r, L(f)). In fact, since N(r,00; f(z +¢)) = S(r, f(z + ¢)), this means that

N(r, 00 f(2 +¢)) <mN(r,00; f(z + ¢)) + S(r, f(z + ¢) = S(r, f(z + ¢)), (L.1)

where m is the mazimum order of all poles of f(z+c). If f(z+c) Z L(f), then by Lemma
2.8 below and (1.1), it follows that

T(r, f(z+¢)) (r,a; f(z 4 €) + N(r,bi f (2 + ) + N(r,00; f(z + ¢)) + S(r, f(2 +¢))
(. LU) + N, D) + S0 S (= + )
1,0 (f(z + &)~ L) + 50,1 + )
(e + )~ L) + S(r, £z 4 )
(1, (F (= +€) ~ L)) + 807,/ + )
(r LELLZEIDY e e )+ 0+ )
T(r 1 (= + ) + S(r, £(2 ),

T

r,

IAIA A IAIA
=

IA
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IA

which, implies that
2T(r, L(f)) > N(ra; L(f)) + N(r,b; L(f)) = T(r, f(z +¢)) + S(r, f(z + ¢)).(1.2)
On the other hand, with Lemma 2.3 below and the definition of L(f), we have
T(r,L(f)) < (k+ 1)T(r, f(z + ) + S(r, f(z + ). (1.3)

By combining (1.2) and (1.3), we get S(r, f(z 4+ ¢)) = S(r, L(f)). Again we know that
S(r, f(z+¢)) = S(r, f(2)). Therefore we use S(r, f(z+c)) = S(r, L(f)) = S(r, f(z)). For
stmplicity we take f(z + ¢) = fe(2).

Definition 1.3. [15] Let f(z) be a meromorphic function in the complex plane and a be
any finite value. If f(z) — a has no zeros, then a is called a Picard value of f(z).

2. Lemmas

Lemma 2.1. [7] Let f(z) be a meromorphic function of hyper order strictly less than 1.
Then

m(r, f{;i)c)) + m(r, %) = S(r, f) and m(r, ?Sfi) = S(r, ), where a is a constant.

Lemma 2.2. (7] Let T : [0, +00) — [0, +00) be a non-dreasing continuous function, and
let s € (0,+00). If the hyper order of T is strickly less than 1, i.e.,

T
limsupy o 2909TT)
logr

and 6 € (0,1 — ¢), then
T(r+s)=T(r)+o (%) ,

where T runs to infinity outside of a set of finite logarithmic measure.
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Lemma 2.3. [4]Let f(z) be a meromorphic function of hyper order strictly less than 1,
then we have
N(r,f(z+¢)) =N(r, f) + S(r, f)
and
T(r,f(z+¢) =T(r, f) + S(r, f).
Lemma 2.4. [15]Let f(z) be a non-constant meromorphic function, a € C, and k be a
positive integer. Then
— k — 1
N(ra; f) < —— Ny (r,a; f) + ——
(Taaﬂf)_k:_i_l k)(r7a7f)+k+1
Lemma 2.5. [15] Suppose that f(z) is a non-constant meromorphic function and P(f) =
apfP + ap—1fP71 4+ ...+ ao(ap # 0) is a polynomial in f(2) with degree p and coefficients
a;(i = 0,1,...,p) are constants, suppose furthermore that b;(j = 0,1,...,q) are distinct
finite values. Then

T(r, f)+ O(1).

m(r PHS e
( ’(f—bl)(f—bg)...(f_bq)) S(r, f).

Lemma 2.6. [15]Let f(z) be a non-constant meromorphic function and a,b be two distict

finite values. If a and b are Picard values of f(z), then f(z) = %, where h(z) is a

non-constant entire function.

Lemma 2.7. Let f(z) be a meromorphic function of hyper order strictly less than 1, and
let a,b be two distict finite values. Suppose that fo and L(f)(Z£ 0) share a,b IM, and
N(r,a; f) + N(r,00; f) = S(r, f). And suppose furthermore that f. # L(f). Then the fol-
lowing holds.

(i) T(r, fo) = N(r,b; fo) + S(r, f), T(r, L(f)) = N(r,b; L(f)) + S(r, f). Moreover, we have
T(r,L(f)) = T(r, fe) + S(r, [).

(“’) T(Tv fc) = N(r: d; fa) +S(T, f)’ T(TvL(f)) = W(ﬂ d7L(f)) —‘rS(T, f)7 where d(# avb) €
C

(i4i) N*(r,a) + N*(r,b) = S(r, f), where N*(r,a) is the counting function of the multiple
common zeros of fo —a and L(f) — a, which counts multiplicities according to the minor
one, notation N*(r,b) can be similarly defined.

(iv)iv(Q(Ty b fe) = S(r, f), N(2(7'7 b L(f)) = S(r, f)-

(v) N(r,b; fc) — Ne(r,b) = S(r, f), where Ng(r,b) is the reduced counting function of the
common zeros of fo —a and L(f) — a with the same multiplicities.

(vi) N(r,0; f2) = S(r, f), N(r,0; L' (f)) = S(r, ).

Proof. (i)
The assumption that N(r,a; f.) + N(r,00; fo) = S(r, f), together with the second main
theorem, means

T(r,fe) < N(ra;fo) +N(r,b; fe) + N(r,00; fe) + S(r, f)
< N(r,b; fo) + S(r, f)
< T(r, fe) +5(r, ),
which implies that
T(r, fo) = N(r,b; fo) + S(r, f). (2.1)

From the assumption, we have
N(r,a; L(f)) + N(r,00; L(f)) = S(r, [),
and
N(r,b; fo) = N(r,b; L(f)). (2.2)
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Similarly, we have
T(r, L(f)) = N(r,b; L(f)) + S(r, f). (2.3)
From (2.1) to (2.3), it follows that
T(T7 L(f)) = T(Tv fC) + S(T, f)

ii
](3}3 the second main theorem, the assumption that N(r,a; f.) + N (r, 00; fo) = S(r, f), and
the conclusion (i), we have
27(r, fe) N(r,a; fe) + N(r,b; fe) + N(r,d; fe) + N(r, 00; fe) + S(r, f)
T(r, fo) + N(r,d; fo) + S(r, f)
20(r, fe) +S(r, f),

IN

INIA

which implies that

T(vaﬂ) = N(’I",d, fC) + S(T‘,f)
Similarly, we have
T(r,L(f)) = N(r,d; L(f)) + S(r, ).
(iii)
Let us denote
_fife = L(f))

95 = a0 - ) (24)
Then, by (1.1) and the value sharing assumption, we know N(r,g) = S(r, f). Next, we
write (2.4) in the form

_ fofe fe— L(f)
Sl T A

Using Lemma 2.5, we get

" (%) =51

By Lemma 2.1 we easily obtain that

o (EHD) 501,

Thus,

T(r,g) =m(r,g) = S(r, f). (2.5)
On the other hand, let zo be a multiple common zeros of f.—a (or fc —b) and L(f) —a (or
L(f)—b) with multiplicities p and ¢ (p > 2, ¢ > 2) respectively. By a simple computation,
we know 2z is a zero of g(z) with multiplicity min{p,q} —1 ( > 1) at least. Therefore, we
have

N™(r,a) <2N(r,0;9) + S(r, f) < 2T(r,g) + S(r, ) = S(r, f),
N*(r,b) = 5(r, f),
and so
N*(r,a) + N*(r,b) = S(r, f).
(iv)
Combining Lemma 2.4 and the conclusion (i), we have

T(r, f0) + 50, £) = N, bi f0) < 5N (85 f0) + 3T, 1) + (1, ),
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which implies
T(r, fe) < Nuy(r,b; fe) + S(r, f) < T(r, fe) + S(r, f).

This together with the conclusion (i), implies that

T(r, fe) = Nuy(r,b fe) + S(r, f) = N(r,b; fo) + S(r, f)
and so

Nea(r,b fe) = 5(r, f),
and similarly, we have
Nz (r,bs L(f)) = S(r, f).

)

We denote by N ;3) (r,b) the reduced counting function of the common simple zeros of f. —b
and L(f) —b. Using the conclusion (iv) and the value sharing assumption, we obtain

N(r,bi fo) > N (,0) 2 Ny (.65 fe) = No(r, 5 L(f)) = N7, b3 fe) + S(r, f)

which means

N(r,b; fo) = N (r,b) + S(r, f). (2.6)
On the other hand, by the conclusion (iii), we have

Ng(r,b) — Ny (r,b) < N*(r,b) = S(r, f)

and so

Ng(r,b) = N§ (r,b) + S(r, f). (2.7)
From (2.6) and (2.7), we see

N(r,b; fe) = Ni(r,b) = S(r, f).
(vi)

We denote by No(r,0; f.) the counting function of zeros of f. but not the zeros of f. —a
and f. —b; No(r,0; L'(f)) is defined similarly. Then by the second main theorem and the
conclusion (i), it follows that

T(r,fo) < N(r,a;fe) + N(r,b; fe) + N(r,00; fo) — No(r,0; f2) + S(r, f)
< T(r fe) = No(r,0; fo) + S(r, f).
Thus,
No(r,0; fo) = S(r, ). (2.8)
and similarly,
No(r,0; L'(f)) = S(r, f). (2.9)

Now by (2.8), (2.9), the conclusion (iv) and the assumption that N (r, a; f.) = N(r,a; L(f)) =
S(r, f), we have

N(r,0; fo) = S(r, ), N(r,0; L'(f)) = S(r, f).
This completes the proof. O

Lemma 2.8. [15] Suppose that f;j(z) (j = 1,2,...,n)(n > 2) are meromorphic functions
and g;(z) (j = 1,2,...,n) are entire functions satisfying the following conditions.

(1) 3 £z =o.

=
(2) gj(z) — gr(z) are not constants for 1 < j < k < n.
(3) For1<j<n 1<h<k<n

T(r, f;) = o{T(r,e™ ")}, v — 00, r € E,
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where E C (1,00) is of finite linear measure.
Then f;(z) = 0.

Lemma 2.9. Let f. be a transcendental entire function of hyper order strictly less than
1, and let a,b be two distinct finite values. If f. and L(f)(# 0) share b IM, and a is a
Picard value of fo and L(f). Then f. = L(f).

Proof. Since a is a Picard value of f. and L(f), we have
fe= eh(z+c) +a
where h(z + ¢) is a non-constant entire function of order less than 1. Moreover, we get

k
Z Bt _ g
L(f)—a _ =0

fc —a eh(z+c) ’

where B; = B;(h?, h? ., R is a Bell polynomial.

k
= Z B; — ae ") = (QG+e) (2.10)
=0

where Q(z + ¢) is entire.
If Q(z + ¢) is a constant, then
L(f)-a
fe—a
where A is a non-zero constant. Since f. and L(f) share b IM, which shows A = 1.
Hence f. = L(f).
If Q(z + ¢) is not a constant, then it follows from (2.10) that

= A,

k
> Bi—ae MO — QT — g, (2.11)
i=0
If Q(z+c¢) + h(z+ ¢) = C, where C is a constant. Then from (2.11) can be rewritten as

k
ZBi = (e +a)e "=t
i=0
k
which is impossible, since Z B; # 0 and h(z+c) is not a constant. Thus Q(z+c)+h(z+c)
i=0

is not a constant, and so h(z + ¢), Q(z + ¢) and h(z + ¢) + Q(z + ¢) are not constants.
Applying Lemma 2.8 to (2.11), we get a contradiction.

This completes the proof.

O
3. Proof of Theorem 1.1
Proof. Assume to the contrary that f. # L(f). Set
Py =129 gp=L-a (3.1)

fc b’
Then, we have
T(Tv F) = T(Ty fc) + S(T7 f)7 T(Tv G) = T(T7 L(f)) + S(T7 f)7
and by the conclusion (i) of Lemma 2.7,

S(r,F)=S(r,f), S(r,G)=S(rf).
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Since f. and L(f) share a,b IM, F(z) and G(z) share 0, 0o IM. Further, the conclusions
(i) and (iv) of Lemma 2.7 imply that
T(r,F)=N(r,00; F)+ S(r, f), T(r,G) = N(r,00;G) + S(r, f) (3.2)
and
N2(r,00; F) + N(2(r,00;G) = S(r, f). (3.3)
Moreover from (3.1), we have

(=B (eI

(fe=b)2" = (L(f)—b)*"
This together with the conclusion (vi) of Lemma 2.7 lead to
N(r,0;F') < N(r,0; fO) + S(r, f) = S(r, f), (34)

N(r,0;G") < N(r,0; L'(f)) + S(r, f) = S(r. f).
Set
F// G//
Let zo be a pole of F(z) and G(z) with the same multiplicities k(by (3.1), we know 2o is
a zero of fo — b and L(f) — b with the same multiplicities k(> 1)). Then, we obtain

a—k a_(k—1) )
(Z) (Z—Zo)k (Z—Zo)k*1 + +ao+a1(z Zo)+a2(z ZO) +
and
bk b_(k—1) ,
G(Z): +...+b0+b1(z—20)+b2(z—20) + ..

(z—20)F (2 — z0)k !

where a_rb_j # 0. A simple computation shows that

k—1 —(k— b_(rk_
H(z) = A=(k=1) — (k=1) +A1(Z720)+A2(Z*Z())2+..., (36)
k a—g b_k

which means that zo is not a pole of H(z). Using (3.1), (3.4) and the conclusion (v) of
Lemma 2.7, we have

N(r,o0; H) < N(r,00; F) — Ng(r,00) + N(r,00;G) — Ng(r,o0)
+N(r,0; F") + N(r,0;G") + S(r, f)
= N(rbyfo) + N(r,b; L(f)) = 2Ng(r,00) + S(r, f) = S(r, f), (3.7)
where Ng(r, 00) is the reduced counting function of the poles of F(z) and G(z) with the

same multiplicities. Obiviously applying the Lemma on logarithmic derivative to (3.5), it
follows that

m(r, H) = S(r, f). (3.8)
Thus by (3.7) and (3.8), we obtain
T(r,H) = S(r, f). (3.9)

In the following, we will discuss two cases.

Case 1. H(z) # 0. In this case (3.2) and (3.3) imply that F(z) and G(z) have infinitely
many simple poles. Let zo be a simple pole of F(z) and G(z) then from (3.6), we know
zo is a zero of H(z). Therefore from (3.3) and (3.9) we have

N(T’,OO,F)+S(T’,f):N(T,OO,F)*N(Q(T,OO,F)SN(T’,O,H)‘FS(T,f):S(T’,f),
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which contradicts (3.2).
Case 2. H(z) =0. In this case (3.5) means that

F(z) = AG(2) + B, (3.10)

where A(# 0) and B are two constants.
We claim that a is not a Picard value of f. and L(f). Otherwise, if a is a Picard value of
fe and L(f), then we see that 0 is a Picard value of F'(z) and G(z). Moreover, since a # b,
by (3.1), it shows 1 is a Picard value of F(z) and G(z). Hence 0 and 1 are two Picard
values of F(z). From Lemma 2.6 and (3.1), it follows that

fc —a -1

o0 F(z) = S 1
which leads to fo(z) = (b—a)e "*) +a, where h(z) is a non-constant entire functions and
o fe(z) is entire. By Lemma 2.9, we know f.(z) = L(f), which contradicts the assumption
fe(2) # L(f)-
Hence, a is not a Picard value of f. and L(f), and so 0 is not a Picard value of F(z) and
G(z). Further, (3.10) yields that B = 0. Thus,

F(z) = AG(z). (3.11)
Since that a # b, by (3.1), we have 1 is Picard value of F'(z) and G(z). Moreover, invoking
A # 0, from (3.11), we see A is a Picard value of F(z). Therefore,
fe—a
A
7. b # A,
which implies that f. # “X’__l“ (note that fc(z) Z L(f), we obtain that A # 1). It is obvious
that

Ab—a Ab—a
A17% a-17"
Ab—a

Hence, we conclude that <= is a Picard value of f., which contradicts the conclusion
(ii) of Lemma 2.7. This completes the proof of the theorem.
|

4. Conclusion

In this research article, we have proved a theorem by using the concept of sharing two
values IM(Ignoring Multiplicities) and replacing a differential function by its polynomial
which improves and generalizes the previous result obtained in [3].
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