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UNIQUENESS OF MEROMORPHIC FUNCTIONS THAT SHARE

VALUES IM WITH THEIR DERIVATIVES

B. SAHA, S. PAL

Abstract. In this paper, we investigate the problem of uniqueness of mero-

morphic functions sharing two values IM(Ignoring Multiplicities) with their

derivatives. Some examples are provided to show the sharpness of the re-

sult. The obtained result improves and generalizes the corresponding result

from [S. Chen and A. Xu, Uniqueness of derivatives and shifts of meromorphic

functions, Comput. Methods Funct. Theory, 22 (2022), 197-205].

1. Introduction, Definitions and Results

Let f(z) be a nonconstant meromorphic function in the whole complex plane. We shall
use the following standard notations of Nevanlinna theory, for instance T (r, f), m(r, f),

N(r, f), N(r, f) (see [5, 10, 15]). We denote by S(r, f) any quantity satisfying S(r, f) =
o{T (r, f)} as (r → ∞, r ̸∈ E), where E denotes any set of positive real numbers having
nite linear measure. The hyper order of f is dened as follows

ρ2(f) = limsupr→∞
log+log+T (r, f)

logr
.

Let k be a positive integer or innity and a ∈ C∪{∞}. Set E(a, f) = {z : f(z)−a = 0},
where a zero with multiplicity k is counted k times. If the zeros are counted only once, then
we denote the set by E(a, f). Let f and g be two non-constant meromorphic functions.
If E(a, f) = E(a, g), then we say that f and g share the value a CM (Counting Multi-

plicities). If E(a, f) = E(a, g), then we say that f and g share the value a IM (Ignoring
Multiplicities). We denote by Ek)(a, f) the set of all a-points of f with multiplicities not
exceeding k, where an a-point is counted according to its multiplicity. Also we denote by
Ek)(a, f) the set of distinct a-points of f with multiplicities not exceeding k. In addition,
we need the following denitions.
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Denition 1.1. [8] Let a ∈ C ∪ {∞}. We denote by N(r, a; f) the counting function of

simple a-points of f and N(r, a; f) denote the corresponding reduced counting function.
For a positive integer k we denote by Nk)(r, a; f) the counting function of those a-points
of f (counted with proper multiplicities) whose multiplicities are not greater than k. By

Nk)(r, a; f) we denote the corresponding reduced counting function. Let N(k(r; a; f) be

the counting function of zeros of f − a with multiplicity at least k and N (k(r, a; f) the
corresponding one for which multiplicity is not counted.

Denition 1.2. [9] Let k be a positive integer or innity. We denote by Nk(r, a; f) the
counting function of a-points of f, where an a-points of multiplicity m is counted m times
if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N (2(r, a; f) + ...+N (k(r, a; f).

Clearly N1(r, a; f) = N(r, a; f).

As we know, Nevanlinna theory plays an important role in the study of complex dif-
ferential equations and complex dierence equations, (see[1, 2, 10, 14]). Recently, many
papers have focused on the study of complex dierential-dierence equations (called DDE
for short), (see [6, 11]) and so on.
For the DDE f ′(z) = f(z + c), X. Qi, L. Yang [12] considered the uniqueness problem
between f ′(z) and f(z + c) of meromorphic functions f(z) in view of Nevanlinna theory
and obtained the following result.

Theorem A. [12] Let f(z) be a transcendental entire function of nite order and a( ̸=
0) ∈ C. If f ′(z) and f(z + c) share 0, a CM, then f ′(z) = f(z + c).

To further improve Theorem A, a more general question could be posed as follows:
could we determine the relationship between the k-th derivative f (k)(z) and the shift
f(z + c) of a meromorphic (or entire) function f(z) under more general sharing value
conditions?
In 2021, S. Chen and A. Xu [3] proved a uniqueness theorem about the k-th derivative

f (k)(z) and the shift f(z+ c) of a meromorphic function f(z) with two CM sharing values
and one IM sharing value, which greatly generalizes and improves Theorem A. Their result
can be stated as follows.

Theorem B. [3] Let f(z) be a non-constant meromorphic function of hyper order ρ2(f) <

1, c be a non-zero nite complex number, and k be a positive integer. If f (k)(z) and f(z+c)

share 0,∞ CM and 1 IM, then f (k)(z) = f(z + c).

Regarding Theorem B it is natural to ask the following questions.

Question 1.1. What will happen if we replace the function f (k) by the function L(f),

where L(f) is dened as follows L(f) = akf
(k) + ak−1f

(k−1) + ... + a1f
′ + a0f, ak(̸=

0), ak−1, ..., a1, a0 ∈ C.

Question 1.2. Is it possible to relax the nature of sharing in Theorem B?

In this paper, we continue to study the above questions. We shall prove a unique-
ness theorem with two IM sharing, which would generalize and improve Theorem B. The
following theorem is the main result of the paper.

Theorem 1.1. Let f(z) be a transcendental meromorphic function of hyper order strictly
less than 1 and let a, b be two distinct nite values. If f(z+ c) and L(f) share a, b IM and

N(r, a; f) +N(r,∞; f) = S(r, f), then f(z + c) = L(f).

Remark 1. It is easy to see that the condition N(r, a; f) + N(r,∞; f) = S(r, f), in
Theorem 1.1 is necessary by the following examples.
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Example 1.1. Let f(z) = 2
1−e−2z and a = 0, b = 1, then for c = πi, f(z + c) and L(f)

share the value 0, 1 IM but f(z + c) ̸≡ L(f) because N(r, a; f) +N(r,∞; f) ̸= S(r, f).

Example 1.2. Let f(z) = sinz, then for suitable values of a, b, c, f(z+ c) and L(f) share
the value a, b IM but f(z + c) ̸≡ L(f).

Remark 2. From the condition of Theorem 1.1 and f(z + c) ̸≡ L(f), we have S(r, f(z +

c)) = S(r, L(f)). In fact, since N(r,∞; f(z + c)) = S(r, f(z + c)), this means that

N(r,∞; f(z + c)) ≤ mN(r,∞; f(z + c)) + S(r, f(z + c)) = S(r, f(z + c)), (1.1)

where m is the maximum order of all poles of f(z+ c). If f(z+ c) ̸≡ L(f), then by Lemma
2.3 below and (1.1), it follows that

T (r, f(z + c)) ≤ N(r, a; f(z + c)) +N(r, b; f(z + c)) +N(r,∞; f(z + c)) + S(r, f(z + c))

≤ N(r, a;L(f)) +N(r, b;L(f) + S(r, f(z + c))

≤ N(r, 0; (f(z + c)− L(f))) + S(r, f(z + c))

≤ T (r, (f(z + c)− L(f))) + S(r, f(z + c))

≤ m(r, (f(z + c)− L(f))) + S(r, f(z + c))

≤ m


r,

(f(z + c)− L(f))

f(z + c)


+m(r, f(z + c)) + S(r, f(z + c))

≤ T (r, f(z + c)) + S(r, f(z + c)),

which implies that

2T (r, L(f)) ≥ N(r, a;L(f)) +N(r, b;L(f)) = T (r, f(z + c)) + S(r, f(z + c)).(1.2)

On the other hand, with Lemma 2.3 below and the denition of L(f), we have

T (r, L(f)) ≤ (k + 1)T (r, f(z + c)) + S(r, f(z + c)). (1.3)

By combining (1.2) and (1.3), we get S(r, f(z + c)) = S(r, L(f)). Again we know that
S(r, f(z + c)) = S(r, f(z)). Therefore we use S(r, f(z + c)) = S(r, L(f)) = S(r, f(z)). For
simplicity we take f(z + c) = fc(z).

Denition 1.3. [15] Let f(z) be a meromorphic function in the complex plane and a be
any nite value. If f(z)− a has no zeros, then a is called a Picard value of f(z).

2. Lemmas

Lemma 2.1. [7] Let f(z) be a meromorphic function of hyper order strictly less than 1.
Then
m(r, f(z)

f(z+c)
) +m(r, f(z+c)

f(z)
) = S(r, f) and m(r, L(f)

f−a
) = S(r, f), where a is a constant.

Lemma 2.2. [7] Let T : [0,+∞) → [0,+∞) be a non-dreasing continuous function, and
let s ∈ (0,+∞). If the hyper order of T is strickly less than 1, i.e.,

limsupr→∞
loglogT (r)

logr
= ϵ < 1,

and δ ∈ (0, 1− ϵ), then

T (r + s) = T (r) + o


T (r)

rδ


,

where r runs to innity outside of a set of nite logarithmic measure.
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Lemma 2.3. [4]Let f(z) be a meromorphic function of hyper order strictly less than 1,
then we have

N(r, f(z + c)) = N(r, f) + S(r, f)

and

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.4. [15]Let f(z) be a non-constant meromorphic function, a ∈ C, and k be a
positive integer. Then

N(r, a; f) ≤ k

k + 1
Nk)(r, a; f) +

1

k + 1
T (r, f) +O(1).

Lemma 2.5. [15] Suppose that f(z) is a non-constant meromorphic function and P (f) =
apf

p + ap−1f
p−1 + ...+ a0(ap ̸= 0) is a polynomial in f(z) with degree p and coecients

ai(i = 0, 1, ..., p) are constants, suppose furthermore that bj(j = 0, 1, ..., q) are distinct
nite values. Then

m


r,

P (f)f ′

(f − b1)(f − b2)...(f − bq)


= S(r, f).

Lemma 2.6. [15]Let f(z) be a non-constant meromorphic function and a, b be two distict

nite values. If a and b are Picard values of f(z), then f(z) = aeh(z)−b

eh(z)−1
, where h(z) is a

non-constant entire function.

Lemma 2.7. Let f(z) be a meromorphic function of hyper order strictly less than 1, and
let a, b be two distict nite values. Suppose that fc and L(f)( ̸≡ 0) share a, b IM, and

N(r, a; f) +N(r,∞; f) = S(r, f). And suppose furthermore that fc ̸= L(f). Then the fol-
lowing holds.
(i) T (r, fc) = N(r, b; fc)+S(r, f), T (r, L(f)) = N(r, b;L(f))+S(r, f). Moreover, we have
T (r, L(f)) = T (r, fc) + S(r, f).

(ii) T (r, fc) = N(r, d; fc) +S(r, f), T (r, L(f)) = N(r, d;L(f)) +S(r, f), where d( ̸= a, b) ∈
C.
(iii) N∗(r, a) +N∗(r, b) = S(r, f), where N∗(r, a) is the counting function of the multiple
common zeros of fc − a and L(f)− a, which counts multiplicities according to the minor
one, notation N∗(r, b) can be similarly dened.

(iv) N (2(r, b; fc) = S(r, f), N (2(r, b;L(f)) = S(r, f).

(v) N(r, b; fc)−NE(r, b) = S(r, f), where NE(r, b) is the reduced counting function of the
common zeros of fc − a and L(f)− a with the same multiplicities.

(vi) N(r, 0; f ′
c) = S(r, f), N(r, 0;L′(f)) = S(r, f).

Proof. (i)

The assumption that N(r, a; fc) + N(r,∞; fc) = S(r, f), together with the second main
theorem, means

T (r, fc) ≤ N(r, a; fc) +N(r, b; fc) +N(r,∞; fc) + S(r, f)

≤ N(r, b; fc) + S(r, f)

≤ T (r, fc) + S(r, f),

which implies that

T (r, fc) = N(r, b; fc) + S(r, f). (2.1)

From the assumption, we have

N(r, a;L(f)) +N(r,∞;L(f)) = S(r, f),

and

N(r, b; fc) = N(r, b;L(f)). (2.2)
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Similarly, we have

T (r, L(f)) = N(r, b;L(f)) + S(r, f). (2.3)

From (2.1) to (2.3), it follows that

T (r, L(f)) = T (r, fc) + S(r, f).

(ii)

By the second main theorem, the assumption that N(r, a; fc)+N(r,∞; fc) = S(r, f), and
the conclusion (i), we have

2T (r, fc) ≤ N(r, a; fc) +N(r, b; fc) +N(r, d; fc) +N(r,∞; fc) + S(r, f)

≤ T (r, fc) +N(r, d; fc) + S(r, f)

≤ 2T (r, fc) + S(r, f),

which implies that

T (r, fc) = N(r, d; fc) + S(r, f).

Similarly, we have

T (r, L(f)) = N(r, d;L(f)) + S(r, f).

(iii)
Let us denote

g(z) =
f ′
c(fc − L(f))

(fc − a)(fc − b)
. (2.4)

Then, by (1.1) and the value sharing assumption, we know N(r, g) = S(r, f). Next, we
write (2.4) in the form

g(z) =
f ′
cfc

(fc − a)(fc − b)

fc − L(f)

fc
.

Using Lemma 2.5, we get

m


r,

f ′
cfc

(fc − a)(fc − b)


= S(r, f).

By Lemma 2.1 we easily obtain that

m


r,

fc − L(f)

fc


= S(r, f).

Thus,

T (r, g) = m(r, g) = S(r, f). (2.5)

On the other hand, let z0 be a multiple common zeros of fc−a (or fc−b) and L(f)−a (or
L(f)− b) with multiplicities p and q (p ≥ 2, q ≥ 2) respectively. By a simple computation,
we know z0 is a zero of g(z) with multiplicity min{p, q}− 1 ( ≥ 1) at least. Therefore, we
have

N∗(r, a) ≤ 2N(r, 0; g) + S(r, f) ≤ 2T (r, g) + S(r, f) = S(r, f),

N∗(r, b) = S(r, f),

and so

N∗(r, a) +N∗(r, b) = S(r, f).

(iv)
Combining Lemma 2.4 and the conclusion (i), we have

T (r, fc) + S(r, f) = N(r, b; fc) ≤ 1

2
N1)(r, b; fc) +

1

2
T (r, fc) + S(r, f),
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which implies

T (r, fc) ≤ N1)(r, b; fc) + S(r, f) ≤ T (r, fc) + S(r, f).

This together with the conclusion (i), implies that

T (r, fc) = N1)(r, b; fc) + S(r, f) = N(r, b; fc) + S(r, f).

and so

N (2(r, b; fc) = S(r, f),

and similarly, we have

N (2(r, b;L(f)) = S(r, f).

(v)

We denote by N
1)
E (r, b) the reduced counting function of the common simple zeros of fc−b

and L(f)− b. Using the conclusion (iv) and the value sharing assumption, we obtain

N(r, b; fc) ≥ N
1)
E (r, b) ≥ N1)(r, b; fc)−N (2(r, b;L(f)) = N(r, b; fc) + S(r, f),

which means

N(r, b; fc) = N
1)
E (r, b) + S(r, f). (2.6)

On the other hand, by the conclusion (iii), we have

NE(r, b)−N
1)
E (r, b) ≤ N∗(r, b) = S(r, f)

and so

NE(r, b) = N
1)
E (r, b) + S(r, f). (2.7)

From (2.6) and (2.7), we see

N(r, b; fc)−NE(r, b) = S(r, f).

(vi)
We denote by N0(r, 0; f

′
c) the counting function of zeros of f ′

c but not the zeros of fc − a
and fc − b; N0(r, 0;L

′(f)) is dened similarly. Then by the second main theorem and the
conclusion (i), it follows that

T (r, fc) ≤ N(r, a; fc) +N(r, b; fc) +N(r,∞; fc)−N0(r, 0; f
′
c) + S(r, f)

≤ T (r, fc)−N0(r, 0; f
′
c) + S(r, f).

Thus,

N0(r, 0; f
′
c) = S(r, f). (2.8)

and similarly,

N0(r, 0;L
′(f)) = S(r, f). (2.9)

Now by (2.8), (2.9), the conclusion (iv) and the assumption thatN(r, a; fc) = N(r, a;L(f)) =
S(r, f), we have

N(r, 0; f ′
c) = S(r, f), N(r, 0;L′(f)) = S(r, f).

This completes the proof. □

Lemma 2.8. [15] Suppose that fj(z) (j = 1, 2, ..., n)(n ≥ 2) are meromorphic functions
and gj(z) (j = 1, 2, ..., n) are entire functions satisfying the following conditions.

(1)

n

j=1

fj(z)e
gj(z) = 0.

(2) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n.
(3) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n

T (r, fj) = o{T (r, egh−gk )}, r → ∞, r ̸∈ E,
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where E ⊂ (1,∞) is of nite linear measure.
Then fj(z) = 0.

Lemma 2.9. Let fc be a transcendental entire function of hyper order strictly less than
1, and let a, b be two distinct nite values. If fc and L(f)( ̸≡ 0) share b IM, and a is a
Picard value of fc and L(f). Then fc = L(f).

Proof. Since a is a Picard value of fc and L(f), we have

fc = eh(z+c) + a,

where h(z + c) is a non-constant entire function of order less than 1. Moreover, we get

L(f)− a

fc − a
=

k

i=0

Bie
h(z+c) − a

eh(z+c)
,

where Bi = Bi(h
(1), h(2), ..., h(k)) is a Bell polynomial.

=

k

i=0

Bi − ae−h(z+c) = eQ(z+c), (2.10)

where Q(z + c) is entire.
If Q(z + c) is a constant, then

L(f)− a

fc − a
= A,

where A is a non-zero constant. Since fc and L(f) share b IM, which shows A = 1.
Hence fc = L(f).
If Q(z + c) is not a constant, then it follows from (2.10) that

k

i=0

Bi − ae−h(z+c) − eQ(z+c) = 0. (2.11)

If Q(z + c) + h(z + c) = C, where C is a constant. Then from (2.11) can be rewritten as

k

i=0

Bi = (eC + a)e−h(z+c),

which is impossible, since

k

i=0

Bi ̸= 0 and h(z+c) is not a constant. Thus Q(z+c)+h(z+c)

is not a constant, and so h(z + c), Q(z + c) and h(z + c) + Q(z + c) are not constants.
Applying Lemma 2.8 to (2.11), we get a contradiction.
This completes the proof.

□

3. Proof of Theorem 1.1

Proof. Assume to the contrary that fc ̸≡ L(f). Set

F (z) =
fc − a

fc − b
, G(z) =

L(f)− a

L(f)− b
. (3.1)

Then, we have

T (r, F ) = T (r, fc) + S(r, f), T (r,G) = T (r, L(f)) + S(r, f),

and by the conclusion (i) of Lemma 2.7,

S(r, F ) = S(r, f), S(r,G) = S(r, f).
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Since fc and L(f) share a, b IM, F (z) and G(z) share 0,∞ IM. Further, the conclusions
(i) and (iv) of Lemma 2.7 imply that

T (r, F ) = N(r,∞;F ) + S(r, f), T (r,G) = N(r,∞;G) + S(r, f) (3.2)

and

N (2(r,∞;F ) +N (2(r,∞;G) = S(r, f). (3.3)

Moreover from (3.1), we have

F ′ =
(a− b)f ′

c

(fc − b)2
, G′ =

(a− b)L′(f)

(L(f)− b)2
.

This together with the conclusion (vi) of Lemma 2.7 lead to

N(r, 0;F ′) ≤ N(r, 0; f ′
c) + S(r, f) = S(r, f), (3.4)

N(r, 0;G′) ≤ N(r, 0;L′(f)) + S(r, f) = S(r, f).

Set

H(z) =
F ′′

F ′ − G′′

G′ . (3.5)

Let z0 be a pole of F (z) and G(z) with the same multiplicities k(by (3.1), we know z0 is
a zero of fc − b and L(f)− b with the same multiplicities k(≥ 1)). Then, we obtain

F (z) =
a−k

(z − z0)k
+

a−(k−1)

(z − z0)k−1
+ ...+ a0 + a1(z − z0) + a2(z − z0)

2 + ...

and

G(z) =
b−k

(z − z0)k
+

b−(k−1)

(z − z0)k−1
+ ...+ b0 + b1(z − z0) + b2(z − z0)

2 + ...,

where a−kb−k ̸= 0. A simple computation shows that

H(z) =
k − 1

k


a−(k−1)

a−k
− b−(k−1)

b−k


+ A1(z − z0) + A2(z − z0)

2 + ..., (3.6)

which means that z0 is not a pole of H(z). Using (3.1), (3.4) and the conclusion (v) of
Lemma 2.7, we have

N(r,∞;H) ≤ N(r,∞;F )−NE(r,∞) +N(r,∞;G)−NE(r,∞)

+N(r, 0;F ′) +N(r, 0;G′) + S(r, f)

= N(r, b; fc) +N(r, b;L(f))− 2NE(r,∞) + S(r, f) = S(r, f), (3.7)

where NE(r,∞) is the reduced counting function of the poles of F (z) and G(z) with the
same multiplicities. Obiviously applying the Lemma on logarithmic derivative to (3.5), it
follows that

m(r,H) = S(r, f). (3.8)

Thus by (3.7) and (3.8), we obtain

T (r,H) = S(r, f). (3.9)

In the following, we will discuss two cases.
Case 1. H(z) ̸≡ 0. In this case (3.2) and (3.3) imply that F (z) and G(z) have innitely
many simple poles. Let z0 be a simple pole of F (z) and G(z) then from (3.6), we know
z0 is a zero of H(z). Therefore from (3.3) and (3.9) we have

N(r,∞;F ) + S(r, f) = N(r,∞;F )−N (2(r,∞;F ) ≤ N(r, 0;H) + S(r, f) = S(r, f),
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which contradicts (3.2).
Case 2. H(z) ≡ 0. In this case (3.5) means that

F (z) = AG(z) +B, (3.10)

where A(̸= 0) and B are two constants.
We claim that a is not a Picard value of fc and L(f). Otherwise, if a is a Picard value of
fc and L(f), then we see that 0 is a Picard value of F (z) and G(z). Moreover, since a ̸= b,
by (3.1), it shows 1 is a Picard value of F (z) and G(z). Hence 0 and 1 are two Picard
values of F (z). From Lemma 2.6 and (3.1), it follows that

fc − a

fc − b
= F (z) =

−1

eh(z) − 1
,

which leads to fc(z) = (b−a)e−h(z)+a, where h(z) is a non-constant entire functions and
so fc(z) is entire. By Lemma 2.9, we know fc(z) = L(f), which contradicts the assumption
fc(z) ̸≡ L(f).
Hence, a is not a Picard value of fc and L(f), and so 0 is not a Picard value of F (z) and
G(z). Further, (3.10) yields that B = 0. Thus,

F (z) = AG(z). (3.11)

Since that a ̸= b, by (3.1), we have 1 is Picard value of F (z) and G(z). Moreover, invoking
A ̸= 0, from (3.11), we see A is a Picard value of F (z). Therefore,

fc − a

fc − b
̸= A,

which implies that fc ̸= Ab−a
A−1

(note that fc(z) ̸≡ L(f), we obtain that A ̸= 1). It is obvious
that

Ab− a

A− 1
̸= a,

Ab− a

A− 1
̸= b.

Hence, we conclude that Ab−a
A−1

is a Picard value of fc, which contradicts the conclusion

(ii) of Lemma 2.7. This completes the proof of the theorem.
□

4. Conclusion

In this research article, we have proved a theorem by using the concept of sharing two
values IM(Ignoring Multiplicities) and replacing a dierential function by its polynomial
which improves and generalizes the previous result obtained in [3].
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