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ASYMPTOTIC BEHAVIOR MIX AND DIFFUSION PROCESS

JEAN TOSSE DIATTA, IBRAHIMA SANE, RAPHAËL DIATTA, CLÉMENT MANGA

Abstract. We study the asymptotic behavior of a solution of mixed differ-

ential equation driven by independent fractional Brownian motion with Hurst
index H ∈ (0; 1) and Levy process. This work consists of determining the

large deviations principle by means of weak regularity of the coefficients of the

stochastic differential equation in temporal distribution space.

1. Introduction

The study of rare events is an important and very active field in a variety of scien-
tific disciplines. Rare event problems arise in the analysis and prediction of major
risks, such as earthquakes, floods, air collision risks, nuclear radiation dispersal.
Studying major risks can be undertaken by probabilistic modelling of processes
such as the stochastic differential equation using certain mathematical tools, or
simulation, to obtain an accurate estimate namely the large numbers theory or the
large deviations theory. Therefore we study in this paper such a rare event via the
large deviations theory.
Let BH =

{
BHt , t ∈ [0, T ]

}
be a fractional Brownian motion with Hurst param-

eter H ∈ (0, 1), W = {Wt, t ∈ [0, T ]} be a standard Brownian motion and N̄ ={
N̄t, t ∈ [0, T ]

}
be a compensated Poisson process defined on a white noise probabil-

ity space (S ′(R),B(S ′(R)),P) where S ′(R) is a tempered distribution space called
dual of Schwartz space on which B(S ′(R)) is a Borel algebra. Consider the fol-
lowing time-dependent mixed stochastic differential equation driven by these three
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processes:

Xε
t = x0+

∫ t

0

b(r,Xε
r )dr + ε

∫ t

0

σH(r,Xε
r )dBHr

+ ε

∫ t

0

∫
R∗
K(r, x,Xε

r )N̄(dx, dr) + ε

∫ t

0

σw(r,Xε
r )dWr,

(1)

where

? x0 ∈ S ′(R) and x ∈ R∗ are measurable random variables;
? b, σH and σw : [0;T ] × S ′(R) → S ′(R) are measurable functions and are

white noise integral ( see[3, 15]);
? K : [0;T ]× S ′(R× R∗)→ S ′(R× R∗) is measurable function and is white

noise integral (see [12]).

These three functions satisfy the following assumption.
Assumption 1. For x ∈ R, z and h ∈ S ′(R), there exist constants M and L such
that

•|b(h)| ≤M , |σ(h)| ≤M , |K(x, h)| ≤M
•|b(h)− b(z)| ≤ L|h− z| , |σ(h)− σ(z)| ≤ L|h− z|
•|K(x, h)−K(x, z)| ≤ L|h− z|.

The existence and uniqueness of solution for equation of such type have been proved
in [12, 13]. The authors consider a class of neutral functional differential equations
with finite delay driven simultaneously by a fractional Brownian motion and a Pois-
son point processes in Hilbert space and prove an existence and uniqueness result.
However our goal in this paper is to study the asymptotic behavior of the solution
of equation (1) via the Freidlin- Wentzell’s large deviation [9] . Moreover in the
literature [4, 5, 10, 11, 14, 15] several authors have established the large deviation
principle for equations driven by Poisson process and those driven simultaneously
by Poisson process and standard Brownian motion. Indeed [15, 14] have established
a large deviation principle for general stochastic evolution equation driven by both
standard Brownian motion and Poisson jump on a given Hilbert space by using
weak convergence method. Concerning the study by the large deviation principle
for stochastic differential equations driven by a fractional Brownian motion(fBm)
and those driven simultaneously by this process and the standard Brownian mo-
tion, we have obtained the results in our papers [7] using the Freidlin-Wentzell [9, 1]
methods in S ′(R). To our knowledge, no article presents the study via a large devi-
ation principle of stochastic differential equation controlled simultaneously by fBm
and Levy process and therefore we invest in it and consequently what allowed us
to write this paper. The approach we have adopted here is different from that used
by other authors. As in our paper [7] we proceed by assuming the independence
of fBm, standard Brownian motion and Poisson process in the first case where the
drift is zero and the diffusion coefficients are equal to one and in the second case
where the drift is non-zero. The paper is organized as follows: Section 2, we set up
some definitions and theorem of fractional Brownian motion, standard Brownian
motion, Poisson jumps process and large deviation principle favourable to our work.
Section 3 contains our main results, these results are carried out in two phases. The
first is when the drift is 0 and the diffusion coefficients are equal to 1 and the second
is when the drift is different from 0.
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2. Preliminaries

Consider the white noise space (S ′(R), B(S ′(R)),P) and denote 〈., .〉 the scalar
product and |.| the norm in S ′(R). It well know that S(R) ⊂ L2(R) ⊂ S ′(R) with
L2(R) is the Hilbert space.
Let BHt , Wt : [0;T ] × S ′(R) → S ′(R) be respectively a fractional Brownian mo-
tion and a standard Brownian with probabilities measures respectively PH and Pw
on B(S ′(R)) and let N̄ : [0;T ] × S ′(R× R) → S ′(R× R) be a compensated Pois-
son process with probability measure ν on B(S ′(R)). So in S′(R) we recall some
definitions and theorems of those three process and large deviation theory.

Definition 2.1. For η and θ ∈ S′(R), the process 〈η, f[0,t]〉 =
∫ t
0
f(r)dBHt and

〈θ, ψ[0,t]〉 =
∫ t
0
ψ(r)dWr are Gaussian process with respectively covariances

|f |2φ = 〈f[0,t], f[0,s]〉 =

∫ t

0

∫ s

0

f(u)f(r)φ(u, r)dudr, |ψ|2 =

∫ t

0

ψ2(r)dr

for all f ;ψ : [0;T ]→ R and φ(t, s) = ∂2RH
∂t∂s = H(2H − 1)|t− s|2H−2

and ω ∈ S ′(R), 〈ω − 1~, ϕt〉 =
∫ t
0

∫
R ϕ(x, r)N̄(dx, dr)

For that , we define the space of continuous square integral functions
L2
φ = L2

φ(R)× L2(R× R∗)× L2(R) where
L2
φ(R) = {f : [0, T ]→ R,

∫ t
0

∫ s
0
f(r)f(u)φ(r, u)dudr < +∞}

L2(R) = {ψ : [0, T ]→ R,
∫ t
0
ψ2(r)dr < +∞}

L2(R∗ × R) = {ϕ : [0, T ]→ R, Iν(ϕ) =
∫ t
0

∫ s
0
λ(ϕ(r, u))ν(dr)dx < +∞}.

(2)

Definition 2.2. The family (Xε
t )ε>0 of probability Pε is said to satisfy a large

deviation principle (LDP) if there exists a rate function I defined on L2
φ and a

speed ε tending to 0 such that:

i) 0 ≤ I(x) ≤ +∞, for all x ∈ L2
φ;

ii) I is lower semicontinuous on L2
φ;

iii) for all a < +∞, {x : I(x) ≤ a} is a compact of L2
φ, in which case I is a

good rate function;
iv) for any closed set C ⊂ L2

φ,

lim
ε→0

sup ε logPε(Xε
t ∈ C) ≤ − inf

x∈F
I(x) (3)

• for any open set O ⊂ L2
φ,

lim
ε→0

inf ε logPε(Xε
t ∈ O) ≥ − inf

x∈O
I(x) (4)

Theorem 2.1. (Contraction principle, see [8])
Let E1 and E2 ⊂ L2

φ and g : E1 → E2 is a continuous function. If the family

(Xε
t )ε>0 satisfies a large deviations principle of a rate function I then the family

g((Xε
t )ε>0) satisfies the LDP on E2 of a rate function J defined by:

J(z) = inf{I(h) : h ∈ E1, z = g(h)},

for each z ∈ E2.
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3. Main résults

Our results are done in two phases: we show LDP first for a sum of those three
independents processes: BH , N̄ and W then we show the LDP for the solution of
equation (1).

3.1. large deviations for the sum independent processes fBm, Bm and
compensated Poisson process. Consider the process

εBHt + εN̄t + εWt, t ∈ [0;T ] (5)

with probability measure P in L2
φ and define Φ = (f, ϕ, ψ) and

I(Φ) =


1
2 |f |

2
φ + Iν(ϕ) + 1

2 |ψ|
2

+∞ otherwise
(6)

Proposition 3.1. The function I : L2
φ → [0; +∞] defined in (6) is a good rate

function and a ∈ R∗+, we have:

(1) I is lower semi-continuous on L2
φ;

(2) {Φ ∈ L2
φ, I(Φ) ≤ a} is a compact subset of L2

φ.

Proof.
Put I1 = 1

2 |f |
2
φ + Iν(ϕ) and I2 = 1

2 |ψ|
2.

By [6] I1 is good rate function in L2
φ(R) × L2(R × R∗) and I2 is too a good rate

function in L2(R), so I been the sum of those functions is a good rate function. �

Theorem 3.2. The family (εBHt +εN̄t+εWt)(ε>0) satisfies a large deviation prin-
ciple with a good rate function I. We have:

(1) for all closed set C ⊂ L2
φ

lim
ε→0

sup ε2 logP
(
εBHt + εN̄t + εWt ∈ C

)
≤ −

[
1

2
|f |2φ + Iν(ϕ) +

1

2
|ψ|2

]
(2) for an open set O ⊂ L2

φ,

lim
ε→0

inf ε2 logP
(
εBHt + εN̄t + εWt ∈ O

)
≥ −

[
1

2
|f |2φ + Iν(ϕ) +

1

2
|ψ|2

]
.

Proof.
Since the families are independent we have:
P(εBHt + εN̄t + εWt) = P(εBHt )× P(εN̄t)× P(εWt). In this cases, we obtain:
for any open subset O ⊂ L2

φ

lim
ε→0

inf ε2 logP(εBHt + εN̄t + εWt ∈ O) = lim
ε→0

inf ε2 logPH(εBHt ∈ O) + lim
ε→0

inf ε2 log ν(εN̄t ∈ O)

+ lim
ε→0

inf ε2 logPw(εWt ∈ O)

≥ −
[

1

2
|f |2φ + Iν(ϕ) +

1

2
|ψ|2

]
.
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For all closet subset C ⊂ L2
φ

lim
ε→0

sup ε2 logP
(
εBHt + εN̄t + εWt ∈ C

)
= lim
ε→0

sup ε2 logPH(εBHt ∈ C) + lim
ε→0

sup ε2 log ν(εN̄t ∈ C)

+ lim
ε→0

sup ε2 logPw(εWt ∈ C)

≤ −
[

1

2
|f |2φ + Iν(ϕ) +

1

2
|ψ|2

]
.

�

3.2. Asymptotic behavior of fractional and Levy diffusion process. In this
second section of our work, we will study the diffusion process Xε

t (1) when the drift
is not 0 and ε tends to 0. So we denote the probability law of Xε

t by µ = P ◦ F−1
where:

?: P, the probability law of εBHt + εN̄t + εWt;
?: F is a deterministic function, solution of the following system of ordinary

differential equations:

Ft(ft, ψt, ϕt) = h(t) = x0 +
∫ t
0
b(h(r))dr +

∫ t
0
σH(h(r))frφ(r, s)dr +

∫ t
0
σw(h(r))ψrdr

+
∫ t
0

∫
R∗ K(x, h(r))(eϕ(x,r) − 1)ν(dx)dr

Ft(ft, 0, 0) = z(t) = x0 +
∫ t
0
b(z(r))dr +

∫ t
0
σH(z(r))frφ(r, s)dr

Ft(0, ψt, 0) = g(t) = x0 +
∫ t
0
b(g(r))dr +

∫ t
0
σw(g(r))ψrdr

Ft(0, 0, ϕt) = p(t) = x0 +
∫ t
0

∫
R∗ K(x, p(r))(eϕ(x,r) − 1)ν(dx)dr

Ft(0, 0, 0) = x0 +
∫ t
0
b(Fr(0, 0, 0))dr

(7)

for which (f, ϕ, ψ) ∈ L2
φ induced by LDP of the process εBHt + εN̄t + εWt.

Proposition 3.2. Assume F (0; 0; 0) defined in (7). Then for R > 0 and δ > 0
there exists α > 0 such that

lim
ε→0

sup ε2 logµ{‖Xε
t − Ft(0; 0; 0)‖L2

φ
> δ, ‖BHt + N̄t +Wt‖L2

φ
< α} < −R. (8)

Proof.
By assumption (1) and Gronwall’s Lemma we have

‖Xε
t − Ft(0; 0; 0)‖L2

φ
≤ εM sup

0≤t≤T
|BHt + N̄t +Wt|eLT

µ{‖Xε
t − Ft(0; 0; 0)‖L2

φ
> δ} ≤ µ{ sup

0≤t≤T
|BHt + N̄t +Wt| >

δe−LT

εM
}

≤ 4 exp{− δ2e−2LT

2ε2M2(t2H + 2t)T 2
}.

µ{‖Xε
t − Ft(0; 0; 0)‖L2

φ
> δ, ‖BHt + N̄t +Wt‖L2

φ
< α}

≤ µ{ sup
0≤t≤T

|BHt + N̄t +Wt| >
δe−LT

εM
, ‖BHt + N̄t +Wt‖L2

φ
< α}

≤ 4 exp{− δ2e−2LT

2ε2M2(t2H + 2t)T 2
}.
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Put R =
δ2e−2LT

2M2(t2H + 2t)T 2
, thus

lim
ε→0

sup ε2 logµ{‖Xε
t − Ft(0; 0; 0)‖L2

φ
> δ, ‖BHt + N̄t +Wt‖L2

φ
< α} < −R.

�

Lemma 3.1. Let σ be a bounded function and f be a bounded and continuous
function. Then there exists c > 0 and N > 0 such that
|f(t)φ(t, s)| ≤ c and |σ(h(t))φ(t, s)| ≤ N for all 0 ≤ s, t ∈ [0, T ].

Proof. f is a bounded function, so there exists δ such that |f | ≤ δ. We have for
s, t ∈ [0;T ]

|f(t)φ(s, t)| = |f(t)||φ(s, t)| = |f ||H(2H − 1)|t− s|2H−2|
≤ δH|(2H − 1)|T 2H = c.

σ is bounded, so there exists M such that |σ(h(t))| ≤M ∀ h ∈ L2
φ(R), we have for

s, t ∈ [0;T ]

|σ(h(t))φ(s, t)| = |σ(h(t))||φ(s, t)| = |σ(h(t))||H(2H − 1)|t− s|2H−2|
≤MH|(2H − 1)|T 2H = N.

�

Theorem 3.3. Assume F defined in (7). For (f, ψ, ϕ) ∈ L2
φ let γt =

∫ r
0
frφ(r, s)dr,

Ψt =
∫ r
0
ψrdr and Θt =

∫ t
0

∫
R∗(eϕ(x,r) − 1)ν(dx)dr. Then for R′ > 0 and δ > 0

there exists α > 0 such that

lim
ε→0

sup ε2 logµ{‖Xε
t−Ft(ft, ϕt, ψt)‖L2

φ
> δ, ‖BHt +N̄t+Wt−

1

ε
(γt+Θ+Ψt)‖L2

φ
< α} < −R′.

(9)

Proof.
Using again assumption (1); Gronwall’s Lemma and the triangular inequality, we
have ,

‖Xε
t − Ft(ft, ψt, ϕt)‖L2

φ
≤ εM sup

0≤t≤T
[|BHt +

1

ε
γt +Wt −

1

ε
Ψt + N̄t −

1

ε
Θt|+ |

2

ε
γt|]eLT .

Put δ′ = δ + 2McT 2HeLT for δ > 0, B̃Ht = BHt +
1

ε
γt, W̃t = Wt −

1

ε
Ψt,

˜̄Nt = N̄t −
1

ε
Θt

µ{‖Xε
t − Ft(ft, ψt, ϕt)‖L2

φ
> δ′} ≤ µ{ sup

0≤t≤T
|B̃Ht + ˜̄Nt + W̃t| >

δe−LT

εM
}.
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µ{‖Xε
t − Ft(ft, ψt, ϕt)‖L2

φ
> δ′, ‖BHt + N̄t +Wt −

1

ε
(γt + Ψt + Θt)‖L2

φ
< α}

≤ µ{ sup
0≤t≤T

|B̃Ht + ˜̄Nt + W̃t| >
δe−LT

εM
, ‖BHt + N̄t +Wt −

1

ε
(γt + Ψt + Θt)‖L2

φ
< α}

≤ exp{−1

ε
I(Φ)}µ̃ε{ sup

0≤t≤T
|B̃Ht + ˜̄Nt + W̃t| >

δe−LT

εM
, ‖B̃Ht + ˜̄Nt + W̃t‖L2

φ
< α}

≤ exp{−1

ε
I(Φ)} × exp{−1

ε
R} = exp{−1

ε
(I(Φ) +R)}

≤ exp{−1

ε
R}.

lim
ε→0

sup ε2 logµ{‖Xε
t − Ft(ft, ψt, ϕt)‖L2

φ
> δ, ‖BHt + N̄t +Wt −

1

ε
(Ψt + Θ)‖L2

φ
< α} ≤ −R′.

�

Proposition 3.3. The function F : [0, T ]× L2
φ → L2

φ−1 defined by (7) is a contin-

uous function on the subset of L2
φ.

Proof.
Let’s first show F (f, ϕ, ψ) = h is continuous for all (f, ϕ, ψ) ∈ L2

φ.

Let h1 = F (f1, ϕ1, ψ1) and h2 = F (f2, ϕ2, ψ2) with

h(t) = x0 +

∫ t

0

b(h(r))dr +

∫ t

0

σH(h(r))frφ(r, s)dr+

∫ t

0

∫
R
K(x, h(r))(eϕ(x,r) − 1)ν(dx)dr

+

∫ t

0

σw(h(r))ψrdr

Using assumption (1), lemma, Gronwall’s lemma, and [6] we have

|h1(t)− h2(t)| ≤ L(1 + c+ 2δ)

∫ t

0

|h1(r)− h2(r)|dr + α(N + 2M)T

‖F (f1, ψ1, ϕ1)− F (f2, ψ2, ϕ2)‖L2
φ

= ‖h1 − h2‖L2
φ
≤ α(N + 2M)TeL(1+c+2δ)T .

Hence F is continuous. �

Theorem 3.4. The family (Xε
t )ε>0 satisfies a large deviation principle with a good

rate function J : L2
φ−1 → [0,+∞] given by:

J(z, p, g) =


1
2 |σ
−1
H (z)[ż − b(z)]|2φ−1 + inf

ψ∈L2(R∗×R)
{Iν̇(ψ), Fν(ψ) = p}+ 1

2 |σ
−1
w (g)[ġ − b(g)]|2

for (z, ϕ, g) ∈ L2
φ−1

+∞ otherwise
(10)

In other word:

(1) J is a good rate function;
(2) for all closed set C ⊂ L2

φ and any open set O ⊂ L2
φ and for (z, ϕ, g) ∈ L2

φ

lim
ε→0

sup ε2 logµ(Xε
t ∈ C) ≤ −J(z, p, g) ≤ lim

ε→0
inf ε2 logµ(Xε

t ∈ O)
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Proof.
Put J1 = 1

2 |σ
−1
H (z)[ż − b(z)]|2φ−1 + inf

ψ∈L2(R∗×R)
{Iν̇(ψ), Fν(ψ) = p} and

J2 = 1
2 |σ
−1
w (g)[ġ − b(g)]|2

J1 is a good rate function and by [9] J2 is too a good rate function, so J = J1 + J2
is a good rate function. By the theorem 3.3 and the fact that F is a continuous
function, the family (Xε

t )ε>0 with probability measure µ = P ◦F−1 satisfies a LDP
with a good rate function J . �

4. Conclusion

In the present paper, we have established a LDP for solution of (1) for any Hurst
parameter H ∈ (0; 1). This construction is carried out in the tempered distribution
space S ′(R) using the method of Freidlin-Wentzell [9] or Azencott’s method [1]. So
it would be very interesting to do this in a space larger than that considered here.

Acknowledgment. We thank the anonymous referees for their comments and
suggestions which allowed us to improve the final version of this article.
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