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EXPLICIT SOLUTION FOR BACKWARD STOCHASTIC
VOLTERRA INTEGRAL EQUATIONS WITH LINEAR TIME

DELAYED GENERATORS

YONG REN, HAROUNA COULIBALY, AUGUSTE AMAN

Abstract. This note aims to give an explicit solution for backward stochastic
Volterra integral equations with linear time delayed generators. The process
Y is expressed by an integral whose kernel is explicitly given. The processes Z
is expressed by Hida-Malliavin derivatives involving Y . This paper generalized
the work Hu and Oksendal who treat the no delay case.

1. Introduction

Backward stochastic Volterra integral equations (BSVIEs, for short) have been initiated
in [10] under Lipschitz condition. This assumption has been relaxed to local Lipschitz
condition in [2]. A few years later, the completed theory of backward stochastic Volterra
integral equations (BSVIEs, for short) has been introduced by Yong in [16, 15, 14] and
references therein. This king of BSDEs has been connected to optimal control problems
for controlled Volterra type systems. Recently, in [3], Coulibaly and Aman study under
Lipschitz assumption the following BSVIEs with general time delayed generator: For a
xed T > 0 and 0 ≤ t ≤ T ,

Y (t) = ξ +

 T

t

f(t, s, Ys, Zt,s)ds−
 T

t

Z(t, s)dW (s), (1.1)

where (Ys, Zt,s) = (Y (s + u), Z(t + u, s + u))−T≤u≤0 denoted the past of process (Y, Z)
until (t, s). In the special case we can consider the function f of this form: f(t, s, ys, zt,s) = 0

−T

g(t+ u, s+ u, z(t+ u, s+ u))α(du), where α is called delay probability measure. This

type of BSDEs can be viewed as the combinaison of Voltera BSDEs and delayed BSDE
introduced in [6, 7]. This study is very interesting since BSVIEs with delayed generator
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are used to model a recursive utility with delay which appears when we face the problem
of dynamic modeling of non monotone preferences. For more detail we refer the reader
to [5] and reference therein. However, as the counter examples in [3] attest, the existence
and uniqueness of the solution is not valid in general. We distinguish two conditions of
existence and uniqueness. First, when the delay probability measure is general, then it is
necessary and sucient that, in a certain sense, the Lipschitz constant of the generator
or the terminal time be small enough. But in the case of special delay measure (it is
supported by [−γ, 0], for γ > 0 suciently small), the existence and uniqueness result
hold for all Lipschitz constant and terminal time.

In this paper our study concern a linear BSVIE with time delayed generator which is
a special case of BSVIE (1.1). Let F (t), 0 ≤ t ≤ T be a given stochastic process, not
necessarily adapted, (G(t, s),−T ≤ t ≤ s ≤ T ) and (g(t, s),−T ≤ t ≤ s ≤ T ) be given pro-
cesses with values in R and α a delay probability measure dened in ([−T, 0],B([−T, 0])).
We consider the following I-type delayed BSVIE:

Y (t) = F (t) +

 T

t

 0

−T

[G(t+ u, s+ u)Y (s+ u) + g(t+ u, s+ u)Z(t+ u, s+ u)]α(du)ds

−
 T

t

Z(t, s)dW (s), 0 ≤ t ≤ T. (1.2)

When α is a Dirac measure on 0 i.e α = δ0, BSVIEs (1.2) becomes

Y (t) = F (t) +

 T

t

[G(t, s)Y (s) + g(t, s)Z(t, s)]ds

−
 T

t

Z(t, s)dW (s), (1.3)

which has been study in [13]. Authors provide under a suitable condition the so-called
variation of constants formula for linear BSVIEs. More precisely, they provide the repre-
sentation of Y as follows:

Y (t) = E

F (t)M t(T ) +

 T

t

Ψ(t, r)Mr(T )F (r)drFt


,

where for all t ∈ [0, T ], M t is the solution to the following SDE:

dM t(s) = g(t, s)M t(s)dW (s), t ≤ s ≤ T

and Ψ design a given function which will be specied later.
A similar result was rst obtained by Hu and Oksendal, [9] for the linear BSVIEs driven

by a Brownian motion and a compensated Poisson random measure. However, in [9] the
coecients G and g are assumed to be deterministic and the function g depends only on
s (i.e g(t, s) = g(s)). In this context, BSVIE (1.3) becomes

Y (t) = F (t) +

 T

t

[G(t, s)Y (s) + g(s)Z(t, s)]ds

−
 T

t

Z(t, s)dW (s), (1.4)

and Y dened by (1.4) can be represented as follows:

Y (t) = EQ

F (t) +

 T

t

Ψ(t, r)F (r)drFt


.

where Q is probability measure equivalent to P. It is dened by

dQ
dP

= exp

 T

0

g(s)dW (s)− 1

2

 T

0

g2(s)ds


.

In this paper we aim to present an explicit representation for the solution of linear
delayed BSVIEs. Since previously we state that delayed linear BSVIEs becomes linear
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BSVIEs when α, a probability measure is equal to δ0 the Dirac measure, the general
context is questionable. Therefore this work can be view as the general extension of one
appear in [13] and then in [9], when we suppose G and g deterministic and the function g
depends only of t (i.e g(t, s) = g(s)). Our method is essentially based on the transformation
of delayed BSVIEs (1.2) to one without delay. Next with the similar argument used in
[13] and [9] respectively, we establish an explicit expression for it solution.

Let describe two examples of applications which motivated our work.
First, we have its link with theory of hedging portfolios in a Volterra type delayed Black

and Scholes market. Indeed, let consider a nancial market made up of a risk-free asset
and a risky asset described respectively by

S0(t) = 1 +

 t

0

 0

−T

r(t+ u, s+ u)S0(s+ u)α(u)ds

and

S(t) = S0 +

 t

0

 0

−T

µ(t+ u, s+ u)S(s+ u)α(du)ds

+

 t

0

σ(t, s)S(s)dW (s), S0 > 0,

where r, µ and σ are some functions and S0 is a positive constant. Let θ = (ϕ0(t),ϕ(t))
be a portfolio of some operator and Y (t) it value. Hence we have

Y (t) = Y (0) +

 t

0

 0

−T

ϕ0(s)r(t+ u, s+ u)S0(s+ u)α(u)ds

+

 t

0

 0

−T

ϕ(s)µ(t+ u, s+ u)S(s+ u)α(u)ds+

 t

0

σ(t, s)ϕ(s)S(s)dW (s)

= Y (0) +

 t

0

 0

−T

r(t+ u, s+ u)(Y (s+ u)− ϕ(s)S(t+ u))α(du)ds

+

 t

0

 0

−T

ϕ(s)µ(t+ u, s+ u)S(s+ u)α(u)ds+

 t

0

σ(t, s)ϕ(s)S(s)dW (s)

= Y (0) +

 t

0

r(t+ u, s+ u)Y (s+ u)α(du)ds

+

 t

0

 0

−T

(µ(t+ u, s+ u)− r(t+ u, s+ u)ϕ(s)S(t+ u)ds+

 t

0

σ(t, s)ϕ(s)S(s)dW (s).

Setting Z(t, s) = σ(t, s)ϕ(s)S(s) and β(t, s) =
µ(t, s)− r(t, s)

σ(t, s)
, the above equation be-

comes

Y (t) = Y (0) +

 t

0

 0

−T

[r(t+ u, s+ u)Y (s+ u) + β(t+ u, s+ u)Z(t+ u, s+ u)]α(du)ds

+

 t

0

Z(t, s)dW (s). (1.5)

If we assume that this portfolio covers a playo of some option with value h(S(T )) i.e
Y (T ) = h(S(T )), it follows from (1.5) that the portefeuille (Y (t))t≥0 satises

Y (t) = h(S(T ))−
 T

t

 0

−T

[r(t+ u, s+ u)Y (s+ u) + β(t+ u, s+ u)Z(t+ u, s+ u)]α(du)ds

−
 T

t

Z(t, s) dW (s). (1.6)

Since Y (0) is the contract price at time 0, it is useful and even necessary to know its value.
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The second example concerns delayed optimal consumption of a Volterra type cash ow
introduced by Agram et al. in [1]. More precisely denote by (Xu(t))t≥0, the cash ow
modeled by the following stochastic Volterra equation with delay




X(t) = x0 +

 t

0

 0

−τ

[b0(t+ v, s+ v)X(s+ v)− u(s+ v)]α(dv)ds+

 t

0

σ0(s)X(s)dW (s), t ≥ 0,

X(t) = x0, u(t) = η(t) t ∈ [−τ, 0].

(1.7)

or, in dierential form by




dX(t) =

 0

−τ

[b0(t+ v, t+ v)X(t+ v)− u(t+ v)]α(dv)dt+ σ0(t)X(t)dW (t)

+

 t

0

 0

−τ

∂b0
∂t

(t+ v, s+ v)X(s+ v)α(dv)ds


dt, t ≥ 0,

X(t) = x0, u(t) = η(t) t ∈ [−τ, 0].

In this problem, we need to nd a control u which maximizes the performance functional
J(u) dened by

J(u) = E
 T

0

 0

−τ

ln(u(s+ v))α(dv)ds+

 0

−τ

θ(v)Xu(T + v)α(dv)


.

Roughly speaking, we need to nd û, such that

J(û) = sup
u

J(u).

By using the maximum principle and in view of [4] or [1], the adjoints processes (Y (t), Z(t, s))0≤t≤s≤T

satisfy a backward stochastic Volterra type of the form:

Y (t) =

 0

−τ

θ(v)α(dv) +

 T

t

f(t, s,Xs, us, Ys, Zt,s)ds−
 T

0

Z(t, s)dW (s), (1.8)

where f is dened by

f(t, s, us, y, z) =

 0

−τ

b0(t+ v, t+ v)y(t+ v)α(dv)

+σ(t)z +

 T

t

 0

−τ

∂b0
∂t

(t+ v, s+ v)y(s+ v)α(dv)ds,

where x, u, y, z is dened in the appropriated space. Using the same methodology as one
appear in [1], to derive û, we need to solve BSVIE (1.8).

In view of his two examples, the study of the explicit solution of linear delayed BSVIEs
comes very important especially since such study in not exists in the literature.

The rest of this note is organized as follows. In Section 2, we introduce some funda-
mental knowledge and assumptions concerning the data of BSVIEs (1.2). Section 3 is
devoted to derive our result.

2. Preliminaries

In all this paper, we shall work on a probability space (Ω,F ,P) equipped with the
ltration F = (Ft)t≥0 satisfying the usual condition. Let W = (W (t), t ≥ 0) be a
standard one dimensional F-adapted Brownian motion. To well dene a notion of solution
of BSVIEs with time delayed generator, let us consider the following spaces. For β > 0,
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: • Let H1 := H2
[−T,T ](R) denote the space of all adapted process (η(t))−T≤t≤T with

values in R such that η(t) = η(0) for t < 0 and

∥η∥2H1
= E

 T

0

eβsη(s)2ds
1/2


< +∞.

: • Let H2 := H2
DT

(R) denote the space of all functions φ : DT → R such for all
t ∈ [−T, T ], the process φ(t, s)s≥t is adapted, φ(t, s) = 0 if t < 0 or s < 0 and

∥φ∥2H2
= E

 T

0

 T

t

eβsφ(t, s)2dsdt
1/2


< +∞,

where DT = (t, s) ∈ [−T, T ]2, t ≤ s.
: • Let S2(R) denote the space of all predictable and almost surely continuous pro-

cess (η(t))−T≤t≤T with values in R such that the norm ∥η∥2S2 = E


sup
0≤s≤T

eβsη(s)2

<

+∞.
: • Let L2

−T (R) denote the space of measurable functions z : [−T ; 0] → R satisfying
 0

−T

 z(t) 2 dt < +∞.

: • Let L∞
−T (R) denote the space of bounded, measurable functions y : [−T, 0] → R

satisfying
sup

−T≤t≤0
 y(t) 2< +∞.

For the comprehension of the sequel, let us precise the following: for each (t, s) ∈ DT , (Y (t), Z(t, s))
denotes the value of the process (Y, Z) at (t, s) while (Yt, Zt,s) = (Y (t + u), Z(t + u, s +
u))−T≤u≤0 denotes all the past of (Y, Z) until (t, s). Therefore, for each (t, s) ∈ DT and
almost all ω ∈ Ω, Yt(ω) and Zt,s(ω) belong respectively to L∞

−T (R) and L2
−T (R).

Denition 2.1. The process (Y (.), Z(., .)) is called a solution to (1.2) if (Y (.), Z(., .))
belongs to H1 ×H2 and satises (1.2).

According to Proposition 3.1 in [3], we have

Remark 1. If (Y (.), Z(., .)) belongs to H1 ×H2 and satisfy (1.2), then Y (.) ∈ S2(R).

Our result will be derived under the following assumptions.

: (A1) F (t), 0 ≤ t ≤ T is a given stochastic process, not necessarily adapted that
belongs in S2(R).

: (A2) G : DT ×Ω → R is a progressively measurable, uniformly bounded function.
: (A3) g : DT ×Ω → R is a progressively measurable, uniformly bounded function.
: (A4) The delay probability measure α have only one atom which is 0.

We give this remark in order to justify certain points of the preceding hypotheses.

Remark 2. In order to extend (Y, Z), the solution of (1.2), to the time interval [−T, 0]
such that Y (t) = Y (0) and Z(t, s) = 0, we extend the functions F, G and g respectively as
follow: For all t < 0, s < 0, F (t) = F (0) and G(t, s) = g(t, s) = 0.

3. Main result

We now establish the main result of the paper that consists to derive an explicit formula
for solutions of BSVIE (1.2). We rst give the following statement. Let us dene

Φ(t, r) = −α(0)G(t, r)
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and consider the sequence (Φ(n))n≥0 dened recursively as follows: Φ(1)(t, r) = Φ(t, r) and
for all n ≥ 2

Φ(n)(t, r) =

 r

t

Φ(n−1)(t, s)Φ(s, r)ds.

We have

Remark 3. Since α is a probability measure, there exists a constant C > 0 (a uniform
bound of the function G) such Φ(t, r) < C. Moreover, by induction method we prove that
for all n ≥ 2,

Φ(n)(t, s) ≤ (CT )n

n!
.

Hence, for all t, s

+∞

n=1

Φ(n)(t, s) < +∞.

In the sequel let us set

Ψ(t, r) =

∞

n=1

Φ(n)(t, r) and ϕ(t, r) = −α(0)g(t, r) (3.1)

Theorem 3.1. Assume that (A1)-(A4) hold. For a suciently small time horizon T or
for a suciently small uniform bound C of G and g, i.e

2C2Temax(1, T ) < 1, (3.2)

BSVIE (1.2) has a unique solution (Y, Z) ∈ S2 ×H2.
Moreover, this solution can be written by: for all t ∈ [0, T ],

(i)

Y (t) = E

F (t)M t(T ) +

 T

t

Ψ(t, r)F (r)Mr(T )drFt


;

(ii)

Z(t, s) = E

M t(s)


DsU

t(t)− U(t)

 T

s

Dsϕ(t, r)dB
t(r)


Fs


, 0 ≤ t ≤ s ≤ T,

where

U(t) = F (t) +

 T

t

Φ(t, r)Y (r)dr − Y (t), (3.3)

with Ds and M t denote respectively the Hida-Malliavin derivatives (see [9] for
more detail) and the exponential martingale solution of the SDE:

dM t(r) = M t(r)ϕ(t, r)dW (r), t ≤ r ≤ T ; M t(t) = 1.

Proof. Let us rst prove that BSVIE (1.2) admits a unique solution. In this fact, thanks
to the work of Coulibaly and Aman (see [3], Theorem 3.3), it suces to show that its
generator is delayed Lipschitz. For all (t, s) ∈ DT and any (yt, zt,s), (y

′
t, z

′
t,s) ∈ L∞

−T (R)×
L2

−T (R), let set

f(t, s, ys, zt,s) =

 0

−T

[G(t+ u, s+ u)y(s+ u) + g(t+ u, s+ u)z(t+ u, s+ u)]α(du).
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hence
f(t, s, ys, zt,s)− f(t, s, y′

s, z
′
t,s)

2

≤ 2

 0

−T

G2(t+ u, s+ u)α(du)

 0

−T

y(s+ u)− y′(s+ u)
2 α(du)

+2

 0

−T

g2(t+ u, s+ u)α(du)

 0

−T

z(t+ u, s+ u)− z′(t+ u, s+ u)
2 α(du)

≤ 2C2

 0

−T

 y(s+ u)− y′(s+ u) 2 α(du) +

 0

−T

 z(t+ u, s+ u)− z′(t+ u, s+ u) 2 α(du)


.

Now it remain to prove (i) and (ii). Let us begin with (i). Our approach is as follows.
First, we transform the BSVIE (1.2) into a BSVIE without delay. Then, we get (i) using
[13]. Let us rst integrate each term of BSVIE (1.2). We obtain for all w ∈ (0, T ),

 T

w

Y (t)dt = H(w) + J(w) + I(w), (3.4)

where

H(w) =

 T

w

F (t)dt,

J(w) =

 T

w

 T

t

 0

−T

[G(t+ u, s+ u)Y (s+ u) + g(t+ u, s+ u)Z(t+ u, s+ u)]α(du)dsdt

and

I(w) = −
 T

w

 T

t

Z(t, s)dW (s)


.

On the other hand, setting

L(w) =

 T

w

Y (t)dt,

we have

L′(w) = H ′(w) + J ′(w) + I ′(w). (3.5)

According to their denition, we have

L′(w) = −Y (w), (3.6)

H ′(w) = −F (w) (3.7)

and

I ′(w) =

 T

w

Z(w, s)dW (s) (3.8)

It remains for us to look very closely at J ′(w). Let us st derive the explicit expression
of J(w). Applying respectively Fubini’s theorem, change of variable and use the fact that



8 YONG REN, HAROUNA COULIBALY, AUGUSTE AMAN EJMAA-2025/13(2)

G(t, s) = Z(t, s) = g(t, s) = 0 for t < 0 or s < 0 we derive

J(w) =

 0

−T

 T+u

w+u

 T+u

t

(G(t, s)Y (s) + g(t, s)Z(t, s))dsdtα(du)

=

 0

−T

 T

−T

 T

t

1[w+u,T+u](t)1[t,T+u](s)(G(t, s)Y (s) + g(t, s)Z(t, s))dsdtα(du)

=

 T

0

 T

t

 0

−T

1[s−T,(t−w)∧0](u)1[s−T,T ](t− w)(G(t, s)Y (s) + g(t, s)Z(t, s))α(du)dsdt

=

 T

0

 T

t

 0

−T

1[s−T,0](u)1[s−T,T ](t− w)1[0,t](w)(G(t, s)Y (s) + g(t, s)Z(t, s))α(du)dsdt

+

 T

0

 T

t

 0

−T

1[s−T,(t−w)](u)1[s−T,T ](t− w)1[t,T ](w)(G(t, s)Y (s) + g(t, s)Z(t, s))α(du)dsdt

=

 T

0

 T

t

 0

s−T

1[0,t](w)(G(t, s)Y (s) + g(t, s)Z(t, s))α(du)dsdt

+

 T

0

 T

t

 0

s−T

1[t,t−u](w)(G(t, s)Y (s) + g(t, s)Z(t, s))α(du)dsdt

=

 T

0

 T

t

 0

s−T

1[0,t−u](w)(G(t, s)Y (s) + g(t, s)Z(t, s))α(du)dsdt.

Hence,

J ′(w) =

 T

0

 T

t

 0

s−T

(δt−u(w)− δ0(w))(G(t, s)Y (s) + g(t, s)Z(t, s))α(du)dsdt

=

 T

0

 T

t

 0

T−s

δt−u(w)(G(t, s)Y (s) + g(t, s)Z(t, s))α(du)dsdt

=

 T

0

 T

t

α(t− w)(G(t, s)Y (s) + g(t, s)Z(t, s))dsdt.

Finally, according to (A4) we obtain

J ′(w) =

 T

w

α(0)(G(w, s)Y (s) + g(w, s)Z(w, s))ds. (3.9)

In view of (3.5)-(3.9), we have

Y (t) = F (t) +

 T

t

Φ(t, s)Y (s)ds+

 T

t

ϕ(t, s)Z(t, s)ds

−
 T

t

Z(t, s)dW (s), a.s. (3.10)

Then in view of Proposition 6.1 in [13], we have

Y (t) = E

M t(T )F (t) +

 T

t

Ψ(t, s)Mr(T )F (r)drFt


,

where for all t ≥ 0, M t is the solution to the following SDE

dM t(s) = ϕ(t, s)M t(s)dW (s), t ≤ s ≤ T, M t(t) = I.

Let us end this proof by provide (ii). For this, let x t ∈ [0, T ] and dene

V t(s) = F (s) +

 T

s

Φ(t, u)Y (u)du− Y (s), s ≥ t.
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According to it denition and in view of (3.10), we have V t(t) = U(t) and

V t(s) =

 T

s

Z(t, u)dW (u)−
 T

s

ϕ(t, u)Z(t, u)du

=

 T

s

Z(t, u)dBt(u), t ≤ s, (3.11)

where for all s ≥ t,

Bt(s) = W (s)−
 s

0

ϕ(t, u)du,

In view of assumption on g, and for a x t ∈ [0, T ], (Bt(s))s≥t is a Brownian motion under
the probability measure Qt dened by dQt = M t(T )dP, where the processus (M t(s))s≥t

satises the following linear SDE

dM t(s) = ϕ(t, s)M t(s)dW (s), t ≤ s ≤ T, M t(t) = I. (3.12)

On the other hand, for a x t ∈ [0, T ], the process (V t(s))t≤s≤T belongs to L2(Qt,FT ).
Next, according to the Clark-Ocone formula under change of measure (see [11]), extended
to L2(Qt,FT ) as in [12], we have, for all s ∈ [t, T ],

V t(s) = EQt

(V t(s)) +

 T

t

EQt


DvV
t(s)− V t(s)

 T

v

Dvϕ(t, r)dB
t(r)


Fv


dBt(v)

= EQt

[V t(s)] +

 T

t

EQt


DvV
t(s)− V t(s)

 T

v

Dvϕ(t, r)dB
t(r)


Fv


dBt(v).

In particular for s = t, we get

U(t) = EQt

(U(t)) +

 T

t

EQt


DvU(t)− U(t)

 T

v

Dvϕ(t, r)dB
t(r)


Fv


dBt(v).

Finally, since EQt

(U(t)) = 0, it follows from identication with the equality (3.11) that

Z(t, s) = EQt


DsU
t(t)− U(t)

 T

s

Dsϕ(t, r)dB
t(r)


Fs



= E

M t(s)


DsU

t(t)− U(t)

 T

s

Dsϕ(t, r)dB
t(r)


Fs


, 0 ≤ t ≤ s ≤ T,

where (M t(s))s≥t satises (3.12). □

Now, if we suppose function g dened only on [−T, T ], we have the following:

Corollary 3.3. Assume that (A1)-(A3) hold. If the horizon time T or bound of G and
g are small enough, then BSVIE (1.2) has a unique solution (Y, Z) ∈ S2 ×H2. Moreover,
we have

(i)

Y (t) = EQ

F (t) +

 T

t

Ψ(t, r)F (r)drFt


,

where Q is a probability measure equivalent to P dened by

dQ
dP

= exp


−
 T

0

α (0) g(s)dW (s)− 1

2

 T

0

α2 (0) g2(s)ds

. (3.13)

(ii) For all 0 ≤ t ≤ T , we have

Z(t, s) = EQ

DsU(t)− U(t)

 T

s

Dsg(r)dW
Q(r)Fs


; 0 ≤ t ≤ s ≤ T,

where Ds denotes the Hida-Malliavin derivatives state briey in [9].

Let us illustre our result by an adapted version of example appear in [9].
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Example 1. As in [9], let ρ be a bounded function dened on [0,+∞[, Lρ it Laplace
transform dened by

Lρ(x) =
 +∞

0

e−xyρ(y)dy

and α a probability measure on [−T, 0] dened by α = 1
2T

λ + 1
2
δ0, where λ is Lebesgue

measure. Let set

G(t, s) = −2(s− t)ρ(s− t), 0 ≤ t ≤ s ≤ T.

Hence, we have

Φ(t, s) = −α(0)G(t, s)

= (s− t)ρ(s− t) = ψ(s− t).

Thus, Φ(n)(t, s) = ψn(t− s) and

Ψ(t, s) =

+∞

n=0

ψn(t− s),

where ψn denotes the n fold convolution of ψ. Since we have

L


+∞

n=1

ψn


(x) =

+∞

n=1

Lψn(x),

and

Lψn(x) = (Lψ(x))n

we derive

LΨ(t, s) =

+∞

n=1

(Lψ(s− t))n

=
Lψ(s− t)

1− Lψ(s− t)
.

where in last equality, we have assumed that Lψ(x) < 1, for all x > 0. Specially taking
ρ(y) = e−y, y > 0, we provide that

Lψ(x) = 1

(x+ 1)2
. (3.14)

Set Ψ(t, s) = ψ(s− t), it follows from (3.14) that

Lψ(x) =

+∞

n=1

(Lψ(x))n

=
Lψ(x)

1− Lψ(x)

=
1

2


1

x
− 1

x+ 2


.

Finally, by converse Laplace transform, we derive

Ψ(t, s) =
1

2
(1− e−(s−t)).

and

Y (t) = EQ

F (t) +

1

2

 T

t

(1− e−(s−t))F (s)dsFt


.
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The smoothness properties of Z(t, s) with respect to t are important in the study of
optimal control (see, [1]) and the numerical solutions (see, [8] and references therein).
Using the explicit form of the solution (Theorem 3.3) we can give sucient conditions for
such smoothness in the linear case.

Theorem 3.2. Suppose g be deterministic, the function F and G are almost surely C1

with respect to variable t and satisfy

E

 T

0


M t(T )

 T

t


F 2(t) + α2(0)G2(t, s) + (F ′(t))2 + α2(0)


∂G(t, s)

∂t

2

ds


dt


< +∞.

Then for t < s ≤ T ,

Z(t, s) = E

M t(s)DsF (t)−

 T

s

M t(s)α(0)G(t, r)DsY (r)drFs


. (3.15)

Moreover, we get

E

 T

0


M t(T )

 T

t


∂Z(t, s)

∂t

2

ds


dt


< +∞. (3.16)

Proof. It follows from (ii) of Theorem 3.2 that

Z(t, s) = E

M t(s)DsU

t(t)Fs



−E

M t(s)U(t)

 T

s

Dsϕ(t, r)dB
t(r)Fs


.

But, since M t(s) is Fs-mesurable and using the same argument appear in [9], we obtain

E

M t(s)U(t)

 T

s

Dsϕ(t, r)dB
t(r)Fs


= M t(s)E


U(t)

 T

s

Dsϕ(t, r)dB
t(r)Fs



= 0.

Therefore in view of (3.3) and the fact that DsY (t) = 0, for s > t, we get

Z(t, s) = E

M t(s)DsU

t(t)Fs



= E

M t(s)DsF (t)−

 T

s

M t(s)α(0)G(t, r)DsY (r)drFs


.

Hence (3.18) holds. □

Now, if we suppose function g dened only on [−T, T ], we have the following:

Corollary 3.3. Assume the same assumptions of Theorem 3.2. For t < s ≤ T , we have

Z(t, s) = EQ

DsF (t)−

 T

s

α(0)G(t, r)DsY (r)drFs


. (3.17)

Moreover, we get

EQ
 T

0

 T

t


∂Z(t, s)

∂t

2

ds


dt


< +∞, (3.18)

where Q is dened by (3.13).

Remark 4. In view of all above, we can say that when we suppose that the delay probability
measure dened on [−T, 0] has only 0 as a unique atom, the delayed linear BSVIEs can
be seen as a generalization of the classical linear BSVIEs. Indeed, in view of the proof of
Theorem 3.3, we have transformed BSVIEs (1.2) to classical linear BSVIE with generator
depending to a delayed probability measure.
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