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ABSTRACT. Integro-differential equations are pivotal in modeling various phe-
nomena in physics and engineering, where the system’s current state depends
on its history.This study explores the approximation of second-order mixed
Volterra-Fredholm integro-differential equations using the Galerkin method,
coupled with power series as basis functions. The Galerkin method is em-
ployed to derive approximate solutions by projecting the problem onto a finite-
dimensional subspace spanned by chosen basis functions. This approach sim-
plifies the solution process by reducing the integro-differential equation to a
system of algebraic equations. Through numerical examples, the method’s
effectiveness is demonstrated. The results show that the Galerkin method
provides highly accurate approximations, with solutions matching the exact
results for all tested cases. This validates the method’s capability to han-
dle complex integro-differential equations efficiently. The study underscores
the Galerkin method’s robustness and versatility in solving integro-differential
problems, highlighting its potential for broader applications in scientific and
engineering disciplines.

1. INTRODUCTION

In the early 20th century, the Russian mathematician Boris Galerkin introduced
what is now known as the Galerkin method, designed to solve boundary value
problems for Partial Differential Equations (PDEs) commonly found in engineering
and physics. Since its inception, the method has evolved and is now used to solve
a wide range of differential equations, including Ordinary Differential Equations
(ODEs) and integral equations.
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Initially developed as a variational approach, the Galerkin method aims to find
approximate solutions to PDEs by representing the solution space as a finite-
dimensional subspace defined by a set of basis functions. These functions are
carefully chosen to capture the key characteristics of the solution.

The Galerkin method works by reducing the residual over the selected subspace,
expressing the differential equation in terms of a residual, which measures the dif-
ference between the actual solution and the approximation. This results in a system
of algebraic equations, typically linear, which provides an approximate solution to
the original differential equation.

Thanks to its flexibility and effectiveness, the Galerkin method gained wide-
spread recognition and application across various fields such as structural mechan-
ics, fluid dynamics, heat transfer, electromagnetics, and quantum mechanics. Over
the years, advancements in numerical analysis, computational methods, and inter-
disciplinary research have led to significant developments and refinements of the
Galerkin method. New variants have been created to address challenges like non-
linearity, multidimensionality, and complex boundary conditions.

Today, the Galerkin method remains a fundamental tool in numerical analy-
sis and scientific computing, integral to the simulation, modeling, and analysis of
complex physical and engineering systems. Its history and continuous evolution
underscore its lasting importance in addressing challenging mathematical problems
and advancing scientific knowledge.

The development of integro-differential equations, especially the Volterra-Fredholm
type, represents a major milestone in mathematical analysis and its applications
to various scientific fields. Named after the mathematicians Vito Volterra and
Ivar Fredholm, these equations blend concepts from both integral and differential
equations.

Italian mathematician Vito Volterra significantly contributed to the study of in-
tegral equations in the late 19th and early 20th centuries, particularly those with
variable limits, which are now called Volterra integral equations. His work, espe-
cially on biological processes and population dynamics, led to the formulation of
equations where a system’s current state depends on its history, now known as
Volterra integro-differential equations. An example is:

o) = 10+ [ K.9ds o)

Fredholm’s contributions laid the groundwork for integral equations with fixed
limits, influencing functional analysis and operator theory.

The Volterra-Fredholm integro-differential equations combine these two con-
cepts, handling systems influenced by both their current state and their cumulative
historical interactions. A general form of such an equation is:

t b
W (t) = Fty() + / Kt 5,y(s)) ds + / Ka(t, 5,y(s)) ds @)

Here, y(t) is the unknown function, while K7 and K are the kernels representing
the integral components of the equation and f(¢) is a given function. These equa-
tions are useful for modeling phenomena in fields like heat conduction, viscoelastic-
ity, population dynamics, and finance. With advances in numerical methods and
computational power, solving these complex equations has become more feasible.
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The Galerkin method is often applied in solving Volterra-Fredholm integro-
differential equations. It provides an efficient framework for analyzing systems
with memory effects and distributed parameters, common in many scientific and
engineering problems. By combining the theories of Volterra and Fredholm with
the Galerkin method, a powerful tool emerges for addressing complex systems in-
fluenced by both their present and historical states.

Several significant studies have contributed to the development of methods for
solving Volterra-Fredholm integro-differential equations:

Karacayir and Yuzbasi [1] proposed a Galerkin-type approach to solve systems of
linear Volterra-Fredholm integro-differential equations. Their main objective was
to develop a numerical scheme for solving these equations under mixed conditions.
The method utilizes a weighted residual scheme with monomials as basis functions
up to a degree N. By applying a Galerkin-like approach, the original problem is
transformed into a system of linear algebraic equations, which, along with the mixed
conditions, provide approximate solutions. Their results, tested with examples from
the literature, demonstrated the method’s accuracy, particularly as N increases.
This approach handles various systems of integral equations, including nonlinear
problems, while maintaining low computational times. Comparisons with other
methods show it offers comparable or superior accuracy.

Krishnaveni et al.[2] introduced the Shifted Legendre Polynomials Method (SLPM)
for solving both linear and nonlinear Volterra-Fredholm integral equations. By uti-
lizing the properties of Shifted Legendre Polynomials and Gaussian integration,
this method transforms the integral equations into a system of algebraic equations.
Their study includes numerical examples and theoretical analyses such as conver-
gence and error assessment, demonstrating SLPM’s reliability and efficiency. Their
findings indicate that SLPM is a powerful approach with potential for future ap-
plications, including solving nonlinear fractional integro-differential and fractional
partial differential equations.

Muna and Iman [3] worked on the numerical solution of linear Volterra-Fredholm
integral equations using Lagrange polynomial approximations. Their research intro-
duced new algorithms based on Lagrange polynomial approximation, Barycentric
Lagrange polynomial approximation, and Modified Lagrange polynomial approxi-
mation. They validated the effectiveness of these methods with several examples.
Comparative analysis showed that the Barycentric Lagrange polynomial provided
the highest accuracy, while the Modified Lagrange polynomial was the fastest. In-
creasing the number of knots nn consistently reduced the error in all methods.
These techniques could also be extended to nonlinear Volterra-Fredholm integral
equations.

AbdulAzeez [4]compared the Integrated Simpson’s Collocation Method with ex-
act solutions for solving fourth-order Volterra integro-differential equations. This
method approximates the highest derivative using power series and Chebyshev poly-
nomials of suitable degrees. Simpson’s rule is applied to the first-order derivative
to approximate the unknown function. Numerical results showed that this method
closely matched the exact solutions and performed better than other existing meth-
ods. The use of Chebyshev polynomials as basis functions reduced absolute errors,
making this a highly accurate and efficient approach.
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Asma and Sahaa [5] introduced a Galerkin method to approximate solutions for
Fredholm-Volterra Integral Equations (FVIEs) of the second kind. They used linear
combinations of several polynomial products as basis functions.

Mamadu and Njoseh [6], along with Mamadu et al. [7], applied the Galerkin
method to solve Volterra equations using orthogonal polynomials and Mamadu-
Njoseh Polynomials, respectively, for the solution of fractional integro-differential
equations. Bello et al. [8] applied the Galerkin method with Chebyshev polynomial
basis functions for solving multi-order fractional differential equations.

Several other studies [9]-[11] applied the collocation method for solving integro-
differential equations, while [12] presented a comparative study of two computa-
tional techniques for Volterra-Fredholm integro-differential equations. Dabiri and
Butche [13] solved multi-order fractional differential equations with multiple delays
using spectral collocation methods. El-Sayed et al. [14] developed the Jacobi op-
erational matrix for the numerical solution of multi-term variable-order fractional
differential equations (FDEs). Study [15] explored the existence of solutions for a
system of nonlinear fractional-order hybrid differential equations (DEs) under stan-
dard boundary conditions. Also, Adewumi et al. [16], Saheed [17] and Ababayo
et al. [18] contain a number of numerical techniques for solving boundary value
problems and integro-differential equations.

This body of work contributes significantly to the understanding and develop-
ment of numerical solutions for Volterra-Fredholm integro-differential equations,
broadening their application in scientific and engineering disciplines. The general
form of a mixed Volterra-Fredholm integro-differential equation can be expressed
as:

x b
v = @)+ [ [ Koy did, (3)
with initial conditions
y(0)=do 4 (0)=dy (4)

where y(z) is the unknown function, f(z) is a known function, K(z,t) is the kernel
functions, and dy and d; are real constant.

2. DEFINITION OF RELEVANT TERMS

2.1. Differential Equations. A differential equation is an equation involving one
or more derivatives of an unknown function, typically denoted as y or f(x), along
with the function itself. For example:

dy
dr
In this equation, y(z) represents the unknown function, g—z is the derivative of y
with respect to x, and 2z is a given function of x.

2x (5)

2.2. Integral Equations. An integral equation is an equation in which the un-
known function appears inside an integral. These equations are often used to model
physical systems and phenomena where the function of interest is expressed in terms
of an integral involving the function itself. Integral equations can be classified based



EJMAA-2025/13(2) SECOND ORDER MIXED VFIDES BY GALERKIN METHOD 5

on their structure and the limits of integration. A general form of an integral equa-
tion is:

b
y(z) = / K (z, s)y(s)ds. (6)

Here, y(x) is the unknown function to be determined, K(x,s) is the kernel of the
integral equation, and a and b are the limits of integration.

2.3. Integro-Differential Equation. An integro-differential equation is a math-
ematical equation where the unknown function y(z) is under an integral sign con-
taining ordinary derivative y,, (x) as well.

A standard integro differential equation is of the form:

b
y() = f(2) + / K (z, $)y(s)ds (7)

Where y(x) is the unknown function to be determined, f(x) is a given function, 7
is a parameter, K(x,s) is the kernel of the integral equation, a and b are the limits
of integration.

2.4. Volterra integral Equation. A Volterra integral equation is an integral
equation where the integration is performed over a variable limit. It is of the
form:

) = 1)+ 7 [ K s)ul)is ®)

2.5. Fredholm integral Equation. The Fredholm integral equation is an integral
equation whose limit of integration is fixed:

b
y() = f(z) + / K (z, s)y(s)ds (9)

2.6. Basis functions. A basis function is one of a set of functions that can be com-
bined to represent any function within a given function space. These basis functions
form a foundation for the function space, enabling any function in that space to be
expressed as a linear combination of them. For instance, the set 1,z,z2, 23, ..., 2"

can serve as basis functions for the space of polynomials up to degree n.

2.7. Residual. In the context of solving differential equations using approximate
methods like the Galerkin method, the residual represents the error or difference
between the left-hand side (LHS) and right-hand side (RHS) of the differential equa-
tion when an approximate solution is used instead of the exact one. It essentially
measures how closely the approximate solution satisfies the differential equation.

For a differential equation of the form: Liu(z)] = f(x)

where L is a differential operator, U(z) is the exact solution, and f(z) is a known
function, the approximate solution wu, (x) is substituted. The residual R(x) is then
defined as:

R(z) = Llun(z)] — f(z) (10)
In other words, the residual R(z) quantifies the difference between the result of

applying the differential operator to the approximate solution w, () and the known
function f(x).
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3. METHOD OF SOLUTION

In this section, we will examine the mixed Volterra-Fredholm integro-differential
equation given by Equations (3) and (4) in the following form:

v (x / / K(z,t)y(t) dtdz, (11)

with initial conditions

y(0)=do  y(0)=du (12)
We assume an approximate solution in the form of a power series:

n

yn(z) = Z e, (13)
n=0
where ¢;,4 = 0(1)n are to be determined. Applying the initial conditions on Equa-
tion (13) yields:

yn(z) = do + drx + Z ezt (14)
n=2
Substituting Equation (14) into Equation (11) leads to the residual equation:

x b
wa=¢wm—fm»—/l/z«%o%u»mm, (15)

Next, we define:
1
I = [ wila) R, (16)
0

where w; = do + dyz + z* is the weight function defined in the interval [0,1] and
i =0(1)n.

Solving Equation (16) results in a system of algebraic equations for the unknown
constants a;(i = 2,3,4,5,...n). These constants are determined by solving the
system using Maple 18. Once the unknowns a; are found, they are substituted
back into Equation (14) to obtain the desired approximate solution.

4. NUMERICAL EXAMPLES

4.1. Example 4.1. Consider the following equation:

o (t) =2t — t2 // (rt? — r2t)u(t)dtdr (17)

with initial conditions «(0) = 1,4’(0) = 9, and the exact solution given by u(t) =
1+ 9¢.

To apply the proposed technique, assume an approximate solution in the form
of a power series:

= i Citi, (18)
=0

where c;t? represents the terms of the power series.
For n=>5, the approximate solution becomes:
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6
us(t) =Y eit’ = co+ ert + eat® + cst® + eatt + os5t° (19)
1=0

By applying the initial conditions «(0) = 1 and «/(0) = 9, to Equation (19) and
substituting the results into the equation (19), we obtain:

us(t) = 14 9t + cot? + c3t® + gt + c5t® (20)

Substituting Equation (20) into Equation (17) approximate solution into the
integro-differential results in the residual equation:
R:

2 10 12 2t3 2 3
— 4+ = - t+ — 12t — = 2083 + — 21
3+3+( 5)02+<6+15>03+< 7>C4+(0 +21)c5( )

By substituting the residual into Equation (16), we obtain a system of algebraic
equations with unknown constants ¢;(i = 2,3,4,5). Solving this system, we find:
co=c3=cqg=c5=0.

Thus, the approximate solution is: w(z) = 1 4 9¢, which matches the exact
solution.

4.2. Example 4.2. Consider the equation:

u'(t) = —— + = /0 / (rt* — r*t)u(t)dtdr, (22)

with initial conditions «(0) = 1,4/(0) = 1. The exact solution is given by: u(t) =
1+t — 3¢

We solve this example following the same procedure as Example 4.1. After ap-
plying the Galerkin method and solving the resulting system of algebraic equations,
we obtain the unknown constants as:

Ccy = —g, c3 = ¢4 = ¢5 = 0. Thus, the approximate solution is the same as the
exact solution:

u(t) =1+t — 3¢

4.3. Example 4.3. Here,we consider

:—15t+//rtu t)dtdr (23)

with initial conditions u(0) = 1,%'(0) =

The exact solution is: u(t) =1 — gt?’

Following the same procedure as in Example 4.1, we find the unknown constants
as:

c3 = —g, ca = ¢4 = ¢5 = 0. Therefore, the approximate solution matches the
exact solution:

u(t)=1- 3243
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4.4. Example 4.4. Solve the following mixed Volterra-Fredholm integro-differential
equation using the Galerkin Method:

77 t 1
u’(t) =2+ 6t — —t* —|—/ / rtu(t)dtdr (24)
200 )y J

with initial conditions »(0) = 1,4/(0) = 1.

The exact solution is:u(t) = 1+t + % + t3

Using the same procedure as in Example 4.1, the unknown constants are deter-
mined as:

co = c3 =1, and ¢4 = ¢5 = 0. Thus, the approximate solution is identical to the
exact solution:

u(z) =1+t+t>+ 1t

5. DISCUSSION OF RESULTS

The Galerkin method has proven to be an effective approach for solving second-
order mixed Volterra-Fredholm integro-differential equations. In the numerical
examples presented, the method produced approximate solutions that matched
the exact solutions with high accuracy. For instance, in Example 4.1, the power
series expansion of the approximate solution exactly reproduced the exact solu-
tion u(t) = 1+ 9¢t. Similarly, Examples 4.2 through 4.4 demonstrated that the
Galerkin method accurately approximated solutions under varying integral kernels
and boundary conditions, with results that aligned precisely with the exact solu-
tions. The computed residuals for each case confirmed that the method effectively
minimized approximation errors. The consistent accuracy observed across diverse
test cases underscores the method’s reliability and its potential for solving complex
integro-differential equations encountered in scientific and engineering applications.

6. CONCLUSION

The Galerkin method provides a robust framework for approximating solutions to
second-order mixed Volterra-Fredholm integro-differential equations. The method’s
application to several numerical examples confirms its accuracy and efficiency, with
approximate solutions aligning perfectly with exact results. By transforming the
integro-differential equation into a system of algebraic equations using power series
and residual equations, the Galerkin method simplifies complex problem-solving
processes. The study’s findings affirm the method’s capability to handle both linear
and nonlinear equations, making it a valuable tool for mathematical modeling in
various scientific and engineering fields. Future research may explore extending this
approach to higher-order and fractional integro-differential equations to further
demonstrate its applicability and enhancing its utility in tackling more complex
mathematical challenges.
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