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*=WEYL CURVATURE TENSOR WITH IN FRAME WORK ON
SASAKIAN MANIFOLD ADMITTING ZAMKOVOY
CONNECTION

PAVITHRA R C AND H G NAGARAJA

ABSTRACT. In this paper, we investigate the *-Weyl curvature tensor on Sasakian
manifolds equipped with the Zamkovoy connection. We explore the geomet-
ric properties of *-Weyl flat and &-x-Weyl flat Sasakian manifolds under this
connection. Furthermore, we examine the condition w* (& U)o R = 0, where
W" and R denote the *-Weyl curvature tensor and the Riemannian curvature
tensor, respectively, both defined with respect to the Zamkovoy connection.
To illustrate the theoretical results, we present an explicit example of a three-
dimensional Sasakian manifold.

1. INTRODUCTION

The notion of a Sasakian structure [14] was introduced by the Japanese mathe-
matician S. Sasaki in 1960. A contact metric manifold is said to be Sasakian if it is
normal. In certain respects, Sasakian manifolds can be regarded as odd-dimensional
analogues of Kéhler manifolds. Weyl [12, 13] introduced a generalized curvature
tensor on a Riemannian manifold that vanishes whenever the metric is (locally)
conformally equivalent to a flat metric. This tensor, known as the Weyl conformal
curvature tensor, is defined by

W(X,Y)Z = R(X,Y)Z- {Ric(Y, Z)X — Ric(X, Z)Y (1)

1
(2n —1)
Y, Z2)QX — g(X,2)QY _
9l 200X — (X, 2)QY} + goms
forall X, Y, Z € x(M), with R being the Riemannian curvature tensor, Ric being

the Ricci tensor and r being the scalar curvature of M. If n = 3 then W(X,Y)Z =0
and if n > 4 then M is locally conformal flat if and only if W(X,Y)Z = 0. In

{9V, 2)X —g(X, 2)Y},
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[9], the authors classified a classes of conformally flat contact metric manifolds
and characterized a conformally flat contact manifolds as a hypersurfaces of 4-
dimensional Kaehler Einstein manifolds. Miyazawa and Yamaguchi [11] proved
that a conformally symmetric Sasakian manifold is also locally isometric to the
unit sphere.

In 1959 Tachibana [16] defined *-Ricci tensor Ric* on almost Hermitian manifold.
In [5] Hamada gave the definition of *-Ricci tensor Ric* in the following way

Ric*(X,Y) = %trace(Z — R(X,¢Y)oZ),

for all vector fields X,Y € x(M), Weyl also introduced the notion of *-Einstein
manifolds, characterized by the condition g(Q*X,Y) = Ag(X,Y), where Q* is the
x-Ricci operator and A is a scalar function on the manifold. He further provided
a classification of *-Einstein hypersurfaces. Ivey and Ryan [7] extended Hamada’s
work by examining the equivalence of the x-Einstein condition with other geometric
conditions, such as the pseudo-Einstein and pseudo-Ryan conditions. Using the
concept of the x-Ricci tensor, Aruna, Venkatesh, and Naik [6] investigated certain
curvature properties on contact metric generalized (k, p)-space forms. Additionally,
the authors in [18] explored curvature properties of Kenmotsu manifolds using the
*-Ricci tensor. Unal, Sari, and Prakasha [17] studied the *-Ricci tensor on normal
metric contact pair manifolds, while in [1], the %-Ricci tensor was examined in the
context of a-cosymplectic manifolds. More recently, Kaimakamis and Panagiotidou
[8] introduced the concept of the x-Weyl curvature tensor on real hypersurfaces in
non-flat complex space forms. It is defined as follows:

W*(X,Y)Z = R(X,Y)Z-— {Ric* (Y, Z)X — Ric*(X, Z)Y + g(Y, 2)Q* X

1
(2n —1)

- 9(X,2)Q"Y}+ m

For all X,Y,Z € x(M), where Q* is the %-Ricci operator and r* is the x-scalar
curvature corresponding to Q* on M.

In 2008, the notion of the Zamkovoy connection was introduced by Zamkovoy [19]
for paracontact manifolds. This connection is defined as a canonical paracontact
connection whose torsion represents the obstruction for a paracontact manifold to
be para-Sasakian. Let M be an n-dimensional almost contact metric manifold
equipped with an almost contact metric structure (¢,&,7,g), where ¢ is a (1,1)-
tensor field, £ is a vector field, n is a 1-form, and ¢ is a Riemannian metric. The
Zamkovoy connection V is defined by

VxY = VxY + (Vxn)Y = n(Y)Vx€ +n(X)oY (2)

for all X,Y € x(M), this connection was further studied by A.M. Blaga [2] in
the context of para-Kenmotsu manifolds. In a Sasakian manifold M of dimension
(2n + 1), the W* with respect to the Zamkovoy connection is given by

{9V, 2)X —g(X, 2)Y},

W+(X,Y)Z = R(X,Y)Z-— (Ric" (Y, Z2)X — Ric*(X, Z)Y (3)

1
(2n —1)

DTN g (X DTV + 5o

where R, Ric and Q are Riemannian curvature tensor, Ricci tensor and Ricci Op-
erator with respect to Zamkovoy V connection respectively.

*

{9(YV, 2)X — g(X, 2)Y'},
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2. Preliminaries

Let M be an almost contact metric manifold of dimension (2n + 1), equipped
with an almost contact metric structure (¢,&,7,g), where ¢ is a (1,1) tensor field,
¢ is a vector field, 7 is a 1-form, and g is a Riemannian metric. Then, according to
[3], we have:

g(¢Xa ¢Y) = g(Xv Y) - U(X)W(Y)a g(Xag) = n(X)a (5)
g(X, ¢Y) = _g(¢X7Y)a (6)

for all vector fields X,Y on M.
A normal contact metric manifold is called a Sasakian manifold. An almost contact
metric manifold is Sasakian if and only if [15]

(Vx@)Y =g(X,Y)§ —n(Y)X, (7)
for all vector fields X,Y on M, where V is the Levi-Civita connection associated
with the Riemannian metric g. From the above equation, it follows that

Vxé=—06X, (8)
(Vxn)Y = —g(¢X,Y), 9)

Moreover, the curvature tensor R, the Ricci tensor Ric and the Ricci operator @)
in a Sasakian manifold M with respect to the Levi-Civita connection satisfy:

R(X,Y)§ =n(Y)X —n(X)Y,
Ric(X,§) = 2nn(X), Q€ = 2n¢,
Ric(¢X,9Y) = Ric(X,Y) — 2nn(X)n(Y),

10
11

(10)
(11)
(12)
n(R(X,Y)Z) = g(Y, Z)n(X) — g(X, Z)n(Y). (13)

for any vector elds X, Y and Z on M .
In [4], Ghosh and Patra derived the expression of *-Ricci tensor on Sasakian man-
ifold, which is of the form

Ric*(X,Y) = Ric(X,Y) — 2n — 1)g(X,Y) — n(X)n(Y), (14)

r* =71 —4n® (15)
Definition 2.1. A Sasakian manifold M is said to be an n-FEinstein manifold if its
Ricci tensor Ric is of the form
Ric(X,Y) = ag(X,Y) + bn(X)n(Y), (16)
where a and b are scalar functions on M.

Definition 2.2. [10] An (2n + 1)-dimensional Sasakian manifold M is said to
be M-projectively flat if the x-Weyl curvature tensor vanishes identically (that is,
W' =0).

Definition 2.3. [10] An (2n + 1)-dimensional Sasakian manifold M is said to be
o-x-Weyl flat ifg(W*(qbX7 oY )oZ, V) =0 for all X,Y,Z and V € x(M).
Definition 2.4. [10] An (2n + 1)-dimensional Sasakian manifold M is said to be
E-x-Weyl flat if W (X, Y)E =0 for all X,Y € x(M).
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3. Some properties of Sasakian manifold admitting Zamkovoy
connection

In this section we consider the x-Weyl curvature tensor of Sasakian manifold
admitting Zamkovoy connection.
Using (7) and (9), in (2) yields,

VxY = VxY +g(X, 6Y)E +n(Y)dX +1(X)oY. (17)

We now calculate the Riemann curvature tensor R using (17) as follows:

R(X,Y)Z = R(X,Y)Z-g(Z,¢X)pY —g(Y,90Z)pX —29(¢X,Y)pZ (18)
+ 9(X, Z2)n(Y)E = g(Y, Z)n(X)§ —n(Y)n(Z) X + n(X)n(Z)Y.
Using (10) and taking Z = £ in the above equation, we get

R(X,Y)¢ = 0. (19)

On contracting (18), we obtain the Ricci tensor Ric of a Sasakian manifold with
respect to the Zamkovoy connection as

Ric(Y, Z) = Ric(Y, Z) + 29(Y, Z) = 2(n + 1)n(Y)n(Z), (20)
this gives
QY = QY +2Y —2(n+ )n(Y)E. (21)
Contracting with respect to Y and Z in (20), we get
T =r+2n, (22)

where 7 and r are the scalar curvatures with respect to the Zamkovoy connection
and the Levi-Civita connection respectively.

Theorem 3.1. If a sasakian manifold M is Ricci flat with respect to the Zamkovoy
connection then M is an n-Einstein manifold.

Proof. Suppose that the Sasakian manifold is Ricci flat with respect to the Zamkovoy
connection. Then from (20), we get

Ric(Y,Z) = —29(Y, Z) + 2(n + 1)n(Y)n(2).
This shows that M is an n-Einstein manifold. (]

Theorem 3.2. A x-Weyl flat Sasakian manifold M admitting Zamkovoy connec-
tion V is an n-Finstein manifold.

Proof. We assume that the manifold M with respect to the Zamkovoy connection
is *-Weyl flat that is W* = 0. Then from (3), (14) and (15):

R(X,Y)Z = ﬁ{(ll —2n)g(Y,Z2)X + (2n —4)g(X, 2)Y + n(X)n(2)Y

n(Y)n(2)X +g(Y, 2)QX — g(X, 2)QY — (2n + 3)g(Y, Z)n(X)¢

(r+ 2n — 4n?)
2n(2n — 1)

+ (2n+3)g9(X, Z)n(Y)§} - {9V, Z2)X —g(X, Z)Y'}.
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Taking the inner product of the above equation with V', we have

sFXVZY) = Gsld=2m)g(¥. 2)p(X.V)

(2n —4)g(X, Z)g(Y, V) +n(X)n(Z)g(Y,V) = n(Y)n(Z2)g(X,

+ o+

(r + 2n — 4n?)
2n(2n — 1)

_l_

(2n +3)g9(X, Z)n(Y)n(V)} —
- g(Xa Z)g(Y7 V)}

{9(Y, Z)g(X,V)

On contracting (23) over X and V| we get

(8n? —2n —2r +1)

Ric(Y, Z) = 1)

9(Y,2) +
Therefore M is an n-Einstein manifold. (]

Theorem 3.3. A &-x-Weyl flat Sasakian manifold M admitting Zamkovoy connec-
tion V is an n-Einstein manifold.

Proof. Now, we assume that thinanifold M with respect to the Zamkovoy con-
nection is &-+-Weyl flat, that is, W*(X,Y )& = 0. Then it follows (3), (14) and (15),
it follows that

(2”—1—1){(1 = 20)n(Y)X + (2n = Un(X)Y = n(X)QY +n(Y)QX}
T n — 4n2
B <%> (n(Y)X =n(X)Y) =0,

now, taking inner product with a vector field V', we get

G2 = DX)a(Y.V) = (20— Un(V)g(X.V) = n(X)a(QY-V)

aV)9@X V) - (S ) ()X, V) — n(X)g(Y- ) =

setting Y = £ and using (20) in above equation, we have

. ~ (r—4n) 4n? +4dn —r
therefore, M is an n-Einstein manifold. (]

Theorem 3.4. An (2n + 1)-dimensional Sasakian manifold M is -x-Weyl flat
with respect to Zamkovoy connection iff it is so with respect Levi-Civita connection,
provided that vector fields are horizantal vector fields.

(23)
V)

9(Y, 2)9(QX,V) — g(X, Z2)g(QY,V) — (2n + 3)g(Y, Z)n(X)n(V)
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Proof. Using (1), (2), (18), (20),(21) and (22), yields
WX, Y)Z = W'X,Y)Z - g(Z ¢X)9Y — g(Y,0Z)¢X (24)
29(0X.Y)9Z + g(X, Z)n(Y)§ — g(Y, Z)n(X)§ —n(Y)n(Z) X

+ XD — G 0¥ 2)X = 2n+ (Y )n(Z)X

— 29(X, Z2)Y +2(n + Dn(X)n(2)Y +29(Y, Z)X
= 2(n+1)g(Y, Z)n(X)§ — 29(X, 2)Y +2(n + 1)g(X, Z)n(Y )&}
+ %*{g(x Z)X —g(X, Z)Y}.

Setting Z = £ in (24), we have
WX, Y)E = WX, Y)E—n(Y)X +9(X)Y
1
—{(1-2 YIX 4+ (2n—1)n(X)Y}.
If X and Y are horizontal vector fields, then from above equation, it follows that
W(X,Y)E =W (X, Y)E.
Therefore, Sasakian manifold M is £-%-Weyl flat with respect to Zamkovoy connec-

tion iff it is so with respect Levi-Civita connection, provided that vector fields are
horizantal vector fields. Hence, the theorem. O

Theorem 3.5. A ¢-x-Weyl flat Sasakian manifold M admitting Zamkovoy con-
nection is an n-Finstein manifold.

Proof. We assume that a Sasakian manifold M is ¢-x-Weyl flat with respect to
Zamkovoy connection, i.e, g(W*((bX, oY)dZ, V) = 0 for all X,Y,Z,V € x(M).
Then, in view of (3), we have

0 = 9(RX.0Y)6Z.0V) ~ G (FIe(oY. 62)a(0X. 6V)

— Ric(¢X,0Z)g(6Y,0V) — 2(2n — 1)g(#Y, 6Z)g(9 X, 4V
+ 2020 — 1)g(¢X, 62)g(¢Y. 8V) + Ric(9 X, $V)g(6Y, $2)

m{g(w 6Z)g(6X, 6V)

— 9(6X,0Z)Ric(¢Y,6V)} + 2n(2n — 1)

- 9(¢X,02)g9(¢Y,6V)}.

In a (2n+ 1) dimensional almost contact metric manifold M if {ej, es,...,e,,&} is a
local orthonormal basis of vector fields in M then {¢e;, dea, ..., pe,, &} is also a local
orthonormal basis and putting Y = Z = e; in preciding equation and summing up
with respect to i 1 < ¢ < 2n+ 1, we obtain

S(Y,Z) = ag(Y, Z) + bn(Y)n(Z),
where and b= {swtsng—:wnr}
Which is - Elnstem mamfold ]

= {=8nf +12n2710n+7‘}

Proposition 3.1. In an (2n + 1)-dimensional Sasakian manifold M admitting
Zamkovoy connection V, if the condition w" (¢€,U)oR = 0 holds, then the equation:
2
Ric2(Y,U) = M gY,U) + Wﬁ(Y)n(U) is satisfied on M.



EJMAA-2025/13(2) *-WEYL CURVATURE TENSOR ON SASAKIAN MANIFOLD 7

Proof. We consider a Sasakian manifold M satisfying the condition:
(W"(&,U) o R)(X, Z)V =0,
where W and R denote the M-projective curvature tensor and the Riemannian
curvature tensor with respect to the Zamkovoy connection, respectively. For all
UY,Z € x(M), we have
W, U)R(X,Z2)V = RW (§,U)X,Z)V+R(X, W (£,U)Z)V  (25)
+ R(X,Z)W'(&U)V.
Replacing X by £ in (25) and using (19), we get
RW'(£.U)E, 2)V =0,
with the help of (3), (19), (14), (15) and preceding equation, we get
2
L%%%@HQMMZW_EF_E

Taking inner product with Y in the above equation and considering a frame field
of M and contracting over Z and V', we get

4n? — 8
Ri*(Y,U) = (n2—n+T)RiC(Y, U) +
n
(8n3 +12n2 — 4n + 1)
2n

Hence, the theorem is proved. ([l

R(QU,Z)V = 0.

(4n? —4n + 1)

Y,
2n 9(Y,U)

n(Y)n(U).

Example 1. We consider the 3-dimensional manifold M = {(z,y,2) € R3},
where (z,y, ) are standard coordinates in R3. Let ey, ea, e3 be a linearly indepen-
dent frame field on M, given by,

.0 ;) 0
€l =€ —, €y =€ /—, €3 = —.

or oy 0z
Let ¢g be the Riemannian metric defined by,

ey {1 ii=1

€i,€5) = . .

g ’ 0 ifi#j.

Let 1 be the 1-form by 7(X) = g(X,e3) for any X € x(M?3), and ¢ be the (1,1)-
tensor field defined by,

per =e1, pex =ez, dez =0.
By direct computations, we can easily to see that
¢*X = X +n(X)¢, n(X)=g(X,9),
and
9(0 X, 9Y) = g(X,Y) = n(X)n(Y).

for all X,Y € x(M3). Thus M?3(¢,&,n,g) is a 3-dimensional Sasakian manifold.
From the Lie-operatory, we have the non-zero compnents

[e1,e2] =0, [er,e3] = —e1, e, €3] = —ea.
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Furthermore, by V, we denote the Levi-civita connection on M, by using Koszul’s
formula, we can calculate, easily

Ve, e1 = e3, Ve,e1 =0, Vel =0,
Ve, €2 =0, Ve,e2 = €3, Vegea =0,
Ve, e3 = —e1, Ve,e3 =—ea, V,e3=0.
From the above results we see that the structure (¢, ¢, 7, g) satisfies
Vxé=—¢°X,

hence (¢, &, 7, g) is a Sasakian structure and M?3(¢, £, 7, g) is a 3-dimensional Sasask-
ian manifold. We obtain the components of the curvature tensor as follows:

R(e1,ez)e; = ea, R(ei,es)er =es, R(es,ez)e; =0,
R(e1,ez)es = —ey1, R(ep,ez)ea =0, R(es,e3)es = es,
R(ey,e2)es =0, R(er,es)es = —ey, R(ea,ez)es = —ea.
From the above relations, we have
Ric(eq,e1) = Ric(ea, ea) = Ric(es,e3) = —2.
Using (17), we obtain

velel = 2637 vegel = 07 ve;;el = el?

Vee2 =0, Vger =2e3, Ve =ea,
Vel €3 = 0, Vezeg = 0, v63€3 =0.

The non zero components of Riemannian curvature tensor with respect to Zamkovoy
connection are given by:

R(el, 62)61 = 0, R(el, 63)61 = 463, R(eg, 63)61 = 0,
}_%(617 62)62 = O, E(el, 63)62 = O, }_%(62, 63)62 = 463,
E(el, 62)63 = 0, E(el, 63)63 = O7 R(€27 63)63 = 0

Using the above curvature tensors with respect to V and V, the relation (19) can
be verified.
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