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Abstract. I  ,       

  --      , -

      . W   

  R0,        -

        . W  

      R0 < 1. C,  -

          ,

       R0   .

P         

 ,       

. O       

       .

1. Introduction

Foot-and-mouth disease is a highly contagious transboundary viral disease aect-
ing domestic and wild artiodactyl animals, leading to signicant economic impacts
[14, 25]. The domestic animal species most aected by this disease include cat-
tle, goats, pigs, sheep, and camels [22]. The virus responsible for foot-and-mouth
disease is known as the foot-and-mouth virus, an RNA virus belonging to the Pi-
cornaviridae family and the Aphtovirus genus [5]. The foot-and-mouth virus has a
capsid formed by an assembly of proteins—VP1, VP2, and VP3—which makes it
highly resistant to cold, dry heat (two and a half hours at 70◦C and 7 minutes at
105◦C), and moist heat (30 minutes at 65◦C and 3 minutes at 90◦C) [18]. Infection
by the virus primarily occurs through the respiratory route. However, the virus is
found in all excretions and secretions of infected animals, as well as in milk, food,

2020 Mtmts Sut Clsston. 34A34, 34D20.
Ky wors n prss. M ; -- ;  

;  ;  .
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water, and any objects that have come into contact with sick animals [22], with an
incubation period ranging from 48 hours to 15 days. The likelihood of transmission
of foot-and-mouth disease depends on distance: the closer the infectious animals
are, the higher the probability of transmission, and vice versa [16].

Cattle are the species most susceptible to the disease. In cattle, foot-and-mouth
disease manifests as vesicles in the oral cavity, on the tongue, interdigital areas,
the coronary band, and the hooves [18]. It is worth noting that animals recovering
from the disease can become asymptomatic carriers of the virus, posing a threat
to susceptible, unvaccinated animals [18]. While the vaccination induces antibod-
ies mainly to structural proteins, the presence of antibodies to the non-structural
proteins (NSP) is suggestive of infection, a criterion for dierentiation of infected
from vaccinated animals (DIVA) [25].

The probability of infection varies with distance. Transmission probabilities are
as follows: 0.25, 0.13, 0.06, 0.02, and 0.0, corresponding respectively to distances
of 0 to 0.5 km, 0.5 to 1 km, 1 to 2 km, 2 to 5 km, and over 5 km [16].

Chad, one of Africa’s major livestock-producing countries, has been ghting
animal diseases on a large scale. Despite signicant resources being allocated,
the country’s livestock sector faces challenges in combating epizootics. Foot-and-
mouth disease remains a severe problem for livestock in Chad. Numerous studies
have shown that foot-and-mouth disease is endemic in Chad, with cattle being the
most aected species. Although the disease occurs episodically in cattle, its spread
varies across regions. For instance, studies conducted in 106 villages revealed a
seroprevalence rate of 60% [23]. Research in the Central and Northeastern regions
of Chad indicated a 40% seroprevalence rate from 1,520 serum samples (928 cattle,
216 goats, 254 sheep, and 122 camels) [1]. Specically, seroprevalence rates in cattle
over ve years old were 78% and 84% in East Batha and West Batha, respectively,
and 67% in Wadi Fira for cattle under one year old. These rates were 64% in
East Batha and 59% in West Batha [1]. These data highlight the urgent need for
solutions to limit new infections.

Foot-and-mouth disease has been the focus of numerous researchers. Some have
developed economic models [4, 9, 26], while others have created spatial models [8, 10,
15]. Concerned about ensuring a healthy food supply, Guillaume [13] investigated
strategies for optimizing mutualized abattoir funds through a study on the impact
of foot-and-mouth disease on agri-food industries. He employed the SIR model
[2, 17] while incorporating immunity and vaccination.

Recent studies in sub-Saharan Africa show that FMD has an incubation period of
2-14 days (average 4-6 days), a transmission rate of 0.18-0.32 per day, and morbid-
ity reaching 80-100% in naive herds, with mortality of 2-5% in adults and 20-30% in
young animals [20]. Standard vaccines (75-85% ecacy) see their protection drop
to 40-50% after 6 months in real conditions [6]. In Chad, the serological preva-
lence reaches 62% (dominant SAT1 serotype) [19], with an empirical R0 of 3.2 [21].
These data suggest heterogeneity of transmission (super-shedders), vaccine degra-
dation under pastoral conditions, and seasonality of outbreaks, while calibrating
transmission and recovery rates to the observed ranges (0.18-0.32 and 0.1-0.3 per
day respectively) for robust biological validation.

The objective of this article is to propose an epidemiological model that takes
into account vaccination and culling due to the weakening of cattle by foot-and-
mouth disease.
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In Section 2, we present the formulation of the model; a comprehensive analysis of
the model is provided in Section 3, and nally, numerical simulations are presented
in Section 4.

2. Mathematical model formulation

In this section, we formulate the mathematical model describing the progres-
sion of the foot-and-mouth disease virus in the cattle population. This model is
designed to analyze the spread of foot-and-mouth disease infection within the cat-
tle population, incorporating vaccination, protection, exposure to the disease, and
culling policies. The total cattle population is divided into six classes, along with
an intermediate class of cattle weakened by the disease that are culled. The model
is developed based on the following assumptions:

H1: Protected individuals are immune to the disease.
H2: Recovered individuals can become susceptible to reinfection.
H3a: A proportion α of infected individuals weakened by the disease is culled.
H3b: A proportion η of recovered individuals weakened by the disease is culled.

Susceptible individuals are infected at a rate β. A proportion of susceptibles
is vaccinated against the infection at a rate δ. Susceptibles who are infected be-
come exposed, reecting the incubation period of foot-and-mouth disease. The
eectiveness of the vaccine is denoted by θ. Specically, the vaccine eectiveness is
calculated as follows [11]:

EV = 1− RV

RNV
(1)

where RV is the incidence in the vaccinated population, and RNV is the incidence
rate (or risk) in the unvaccinated population.

Vaccinated cattle lose their immunity at a rate τ . The class D, representing
culled individuals, is not explicitly included in the system of dierential equations.

Symbol Description of model variables
S Number of susceptibles: individuals at risk of contracting the infection.
E Number of exposed: individuals exposed to the infection but not yet infectious.
I Number of infected: individuals infected and capable of transmitting the infection.
V Number of vaccinated: susceptible individuals vaccinated against the infection.
R Number of recovered: individuals who have recovered from the infection.
P Number of protected: vaccinated individuals who are immune to the infection.
D Number of culled: individuals culled due to weakness caused by the infection.

Table 1. Description of model variables
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Figure 1. Flow diagram of the foot-and-mouth disease model compartments

dS

dt
= Λ− βSI − (δ + µ)S (2a)

dE

dt
= βSI + τV − (σ + µ)E (2b)

dI

dt
= σE − (µ+ d+ α+ γ)I (2c)

dV

dt
= δS − τV − (µ+ θ + ϵ)V (2d)

dR

dt
= γI + ϵV − (µ+ η)R (2e)

dP

dt
= θV − µP (2f)

provided with the initial conditions

S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, V (0) ≥ 0, R(0) ≥ 0, P (0) ≥ 0 (2g)

3. Mathematical model analysis

3.1. Basic analysis.

3.1.1. Feasible region of the model. We assume that all parameters and state vari-
ables in system (2) remain positive for all times t ≥ 0.

Lemma 3.1. The set

Ω =


X ∈ R6,X(t) ≥ 0, 0 ≤ N(t) ≤ Λ

µ


(3)

is positively invariant.

Proof. From equation (2a), we have:

dS

dt
= Λ− βSI − (δ + µ)S
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with the solution:

S(t) = e−
 t
0
k1(x) dx


S(0) + Λ

 t

0

e
 x
0

k1(s) dsdx


, (4)

where k1(t) = βI(t) + δ + µ. Since k1(t) ≥ 0 and S(0) ≥ 0, we conclude that
S(t) ≥ 0 for all t ≥ 0.

For equation (2b):

dE

dt
= βSI + τV I − (σ + µ)E,

assume, by contradiction, that there exists a time t1 > 0 such that E(t1) = 0,
E′(t1) < 0, and X(t1) > 0. Then, from the equation, we get E′(t1) = βS(t1)I(t1)+
τV (t1)I(t1) > 0, a contradiction. Thus, E(t) ≥ 0 for all t ≥ 0.

From equation (2c):

dI

dt
= σE − (µ+ d+ α+ γ)I,

we get the solution:

I(t) = e−(µ+d+α+γ)t


I(0)− Λ

µ+ d+ α+ γ


+

Λ

µ+ d+ α+ γ
≥ 0 (5)

Similarly, for V (t):

dV

dt
= δS − τV I − (µ+ θ + ϵ)V,

we have:

V (t) = e−
 t
0
k2(x) dx


V (0) +

 t

0

δS(x)e
 x
0

k2(s) dsdx


≥ 0, (6)

where k2(t) = τI(t) + θ + µ+ ϵ.
In the same way:

R(t) = e−(µ+η)t


R(0) +

 t

0

k3(x)e
(µ+η)xdx


≥ 0, P (t) = eµt


P (0) + θ

 t

0

V (x)e−µxdx


≥ 0,

where k3(t) = γI(t) + ϵV (t).
Now we show that the total population N(t) is bounded. From the system:

dN

dt
= Λ− µN(t)− dI − ηR (7)

≤ Λ− µN(t) (8)

Solving this dierential inequality, we obtain:

0 ≤ N(t) ≤ e−µt


N(0)− Λ

µ


+

Λ

µ


Therefore, as t → ∞:

0 ≤ N(t) ≤ Λ

µ


□
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3.1.2. Disease-Free Equilibrium. The disease-free equilibrium (DFE) of the model
(2), corresponding to the absence of infection in the population, is given by:

E∗
0 =


Λ

δ + µ
, 0, 0,

Λδ

(δ + µ)(µ+ θ + ϵ)
,

Λδϵ

(µ+ ϵ)(δ + µ)(µ+ θ)
,

Λδθ

µ(δ + µ)(µ+ θ)



(9)

3.2. Reproduction number. We compute the basic reproduction number R0

following the next-generation matrix approach [24], evaluated at the disease-free
equilibrium point E∗

0 given in equation (9). We obtain the matrices:

F =


0 Λβ(µ+θ+ϵ)+Λδτ

(δ+µ)(µ+θ+ϵ)

0 0


, V =


µ+ σ 0
−σ µ+ d+ α+ γ


,

with inverse:

V −1 =


1

µ+σ 0
σ

(µ+σ)(µ+d+α+γ)
1

µ+d+α+γ




The next-generation matrix is given by:

FV −1 =


Λβσ(µ+θ+ϵ)+Λδτσ

(µ+σ)(δ+µ)(µ+θ+ϵ)(µ+d+α+γ)
Λβ(µ+θ+ϵ)+Λδτ

(δ+µ)(µ+θ+ϵ)(µ+d+α+γ)

0 0




Hence, the basic reproduction number is:

R0 =
Λβσ(µ+ θ + ϵ) + Λδτσ

(µ+ σ)(δ + µ)(µ+ θ + ϵ)(µ+ d+ α+ γ)
 (10)

We analyze the sensitivity of R0 with respect to model parameters:

∂R0

∂Λ
=

β(µ+ θ + ϵ) + δτ

(µ+ σ)(δ + µ)(µ+ θ + ϵ)(µ+ d+ α+ γ)
> 0,

∂R0

∂β
=

Λσ(µ+ θ + ϵ)

(µ+ σ)(δ + µ)(µ+ θ + ϵ)(µ+ d+ α+ γ)
> 0,

∂R0

∂γ
=

∂R0

∂d
=

∂R0

∂α
= − Λβσ(µ+ θ + ϵ) + Λδτσ

(µ+ σ)(δ + µ)(µ+ θ + ϵ)(µ+ d+ α+ γ)2
< 0,

∂R0

∂τ
=

Λδσ

(µ+ σ)(δ + µ)(µ+ θ + ϵ)(µ+ d+ α+ γ)
> 0,

∂R0

∂σ
=

(Λβ(µ+ θ + ϵ) + Λδτ)(µ− σ)

(µ+ σ)2(δ + µ)(µ+ θ + ϵ)(µ+ d+ α+ γ)
,

∂R0

∂θ
=

Λσ [β(µ+ θ + ϵ) + δτ ] (µ− θ)

(µ+ σ)(δ + µ)(µ+ θ + ϵ)2(µ+ d+ α+ γ)
< 0,

∂R0

∂δ
=

Λτσ(µ+ δ)− Λδτσ − Λβσ(µ+ θ + ϵ)

(µ+ σ)(δ + µ)2(µ+ θ + ϵ)(µ+ d+ α+ γ)
< 0,

∂R0

∂µ
< 0 (complex expression, but strictly negative),

∂R0

∂η
= 0



EJMAA-2025/13(2) ON THE FRACTIONAL-ORDER GAMES 7

Interpretation:

(1) No eect from η: Since ∂R0∂η = 0, the culling of recovered individuals
has no impact on disease transmission. However, separating them from
healthy individuals remains advisable.

(2) Positive inuence on R0: Increasing Λ, β, or τ raisesR0. Thus, reducing
the recruitment of unvaccinated susceptibles, minimizing contact between
susceptible and infected cattle, and preventing vaccine ecacy loss are key
strategies.

(3) Negative inuence on R0: Increasing vaccination rate δ, vaccine e-
cacy θ, recovery rate γ, and loss rate ϵ decreases R0. Hence, vaccination
campaigns should focus on improving these factors.

(4) Mortality-related eects: Increasing disease-induced mortality d, slaugh-
ter rate α, or natural death rate µ reduces R0, but these are economically
and ethically undesirable strategies.

(5) Impact of σ: If µ < σ, then ∂R0

∂σ < 0, which helps reduce disease spread.

However, for µ > σ, we get ∂R0

∂σ > 0, implying acceleration of infection.
Therefore, reducing the progression from exposed to infectious (via vacci-
nation) is one of the most eective strategies.

−
1

.0
0.

0
0.

5
1.

0

PRCC for R0 with the parameters

Parameters

P
R

C
C

Λ γ β µ d α θ ε σ δ τ η

Figure 2. PRCC for R0

Interpretation: Figure (2) shows that parameters far from the origin are highly
sensitive to changes in R0. However, it will be necessary to reduce the recruitment
of unvaccinated susceptibles and decrease the infection rate. Similarly, the recov-
ery rate γ of the infected individuals should be increased through vaccination or
treatment in order to reduce new infections.

3.3. Stability of the disease-free equilibrium point.

3.3.1. Local stability of the disease-free equilibrium point. Let us dene the matrix
M = F − V as:

M =


−(µ+ σ)

Λβ(µ+ θ + ϵ) + Λδτ

(δ + µ)(µ+ θ + ϵ)
σ −(µ+ d+ α+ γ)


 (11)

which is a square matrix of order 2. The determinant of M can be expressed as:
det(M) = λ1λ2, where λ1 and λ2 are the eigenvalues of M . According to [Theorem
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2, [24]], the system exhibits two equilibrium states when:

R0 > 1 ⇐⇒ det(M) < 0, R0 < 1 ⇐⇒ det(M) > 0

.

Theorem 3.1. The disease-free equilibrium point E∗
0 is locally asymptotically stable

if R0 < 1, otherwise unstable.

Proof. The Jacobian matrix for the disease-free equilibrium point (9) is:

J =




−(µ+ δ) 0 − Λβ
δ+µ 0 0 0

0 −(µ+ σ) Λβ(µ+θ+ϵ)+Λδτ
(δ+µ)(µ+θ+ϵ) 0 0 0

0 σ −(µ+ d+ α+ γ) 0 0 0

δ 0 − Λτδ
(δ+µ)(µ+θ+ϵ) −(µ+ θ + ϵ) 0 0

0 0 γ ϵ −(µ+ η) 0
0 0 0 θ 0 −µ




(12)
and

J ′ =


−µ− σ Λβ(µ+θ+ϵ)+Λδτ

(δ+µ)(µ+θ+ϵ)

σ −(µ+ d+ α+ γ)




The other eigenvalues of the Jacobian matrix J calculated at the disease-free equi-
librium point (9) are λ1 = −(µ + σ), λ4 = −(µ + θ + ϵ), λ5 = −(µ + η), and
λ6 = −µ, which are negative except for those of the matrix J ′. We note that
J ′ = M . Therefore,

λ3 + λ2 = −(α+ d+ γ + 2µ) (13)

λ3 · λ2 = (µ+ σ)(µ+ d+ α+ γ)(1−R0) (14)

Using the Routh-Hurwitz criterion [12] and [24], if R0 < 1, the disease-free equilib-
rium point E∗

0 is locally asymptotically stable. □

3.3.2. Global stability of the disease-free equilibrium point.

Theorem 3.2. The disease-free equilibrium point E∗
0 is globally asymptotically sta-

ble if R0 < 1 on the domain

Ω1 =


(S, V ) ∈ R2, 0 ≤ S(t) ≤ Λ

µ+ δ
, 0 ≤ V (t) ≤ Λδ

(µ+ δ)(µ+ θ + ϵ)




Proof. (1) For E = I = 0, we obtain, by solving:

S(t) = e−(δ+µ)t


S(0)− Λ

δ + µ


+

Λ

δ + µ

V (t) = e−(µ+θ+ϵ)t


V (0)− Λδ

(δ + µ)(µ+ θ + ϵ)


+

Λδ

(δ + µ)(µ+ θ + ϵ)

+
δ

θ − δ


S(0)− Λ

δ + µ


(e−(µ+δ)t − e−(µ+θ+ϵ)t)

R(t) =


R(0)− Λδϵ

(µ+ δ)(µ+ θ + ϵ)(µ+ η)


e−(µ+η)t + h1(t) +

Λδϵ

(µ+ δ)(µ+ θ + ϵ)(µ+ η)

P (t) =


P (0)− Λδθ

µ(δ + µ)(µ+ θ + ϵ)


e−µt + h2(t) +

Λδθ

µ(δ + µ)(µ+ θ + ϵ)
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where

h1(t) =
δθ

θ − δ


S(0)− Λ

δ + µ


(e−(µ+θ+ϵ)t − e−(µ+η)t)

+
ϵδ

θ + ϵ− δ


S(0)− Λ

µ+ δ


− 1

η − δ
(e−(µ+δ)t − e−(µ+η)t) +

1

θ + ϵ− η
(e−(µ+θ+ϵ)t − e−(µ+η)t)


,

h2(t) =
θ

θ + ϵ


V (0)− Λδ

(δ + µ)(µ+ θ + ϵ)


e−µt − e−(µ+θ+ϵ)t



+
δθ

θ + ϵ− δ


S(0)− Λ

µ+ δ


1

δ
(e−µt − e−(µ+δ)t) +

1

θ + ϵ
(e−(µ+θ+ϵ)t − e−µt)




Taking the limit as t → ∞, we obtain:

lim
t→∞

S(t) =
Λ

δ + µ
,

lim
t→∞

V (t) =
Λδ

(δ + µ)(µ+ θ + ϵ)
,

lim
t→∞

R(t) =
Λδϵ

(µ+ ϵ)(δ + µ)(µ+ θ)
,

lim
t→∞

P (t) =
Λδθ

µ(δ + µ)(µ+ θ)


Thus, the disease-free equilibrium point E∗
0 is globally stable.

(2) Let g1 and g2 be the functions of the infected variables dened by:

g1 = βSI + τV I − (σ + µ)E (15)

g2 = σE − (µ+ d+ α+ γ)I (16)

We dene:

A =
∂(g1, g2)

∂(E, I)

At the disease-free equilibrium point, we obtain the matrix:

A =

−(σ + µ) Λβ
δ+µ + Λτ

(δ+µ)(µ+θ)

σ −(µ+ d+ α+ γ)



and

Ĝ(E, I) = A


E
I


−


g1
g2



=


β


Λ
δ+µ − S


I + τ


Λδ

(δ+µ)(µ+θ+ϵ) − V

I

0



S,E, and I are positive, and E∗
0 is globally stable if and only if:

0 ≤ S(t) ≤ Λ

µ+ δ
and 0 ≤ V (t) ≤ Λδ

(µ+ δ)(µ+ θ + ϵ)


According to the Castillo-Chavez theorem [7], E∗
0 is globally asymptotically stable

on

Ω1 =


(S, V ) ∈ R2, 0 ≤ S(t) ≤ Λ

µ+ δ
, 0 ≤ V (t) ≤ Λδ

(µ+ δ)(µ+ θ + ϵ)




□
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4. Computational investigation

This part of our work is dedicated to the estimation of parameters and the
numerical simulation of the studied model in order to understand the predictions
of foot-and-mouth disease (FMD) transmission in cattle.

4.1. Parameter values. All parameters studied in this model are of critical im-
portance. The numerical values of some parameters are given with their sources,
while for the other parameters, we have assumed their values as shown in Table 3.

Symbol Description of model parameters
Λ Rate of entry of new individuals into the susceptible population
β Transmission rate of infection from infectious to susceptible individuals
γ Recovery rate of infectious individuals
α Mortality rate of slaughtered infectious individuals
δ Rate at which susceptible individuals are vaccinated
τ Rate of loss of protection provided by the vaccine
σ Rate of progression from exposed to infectious individuals
θ Vaccine ecacy rate
η Mortality rate of slaughtered recovered individuals
µ Natural mortality rate of cattle
d Mortality rate due to the disease
ϵ Recovery rate of vaccinated cattle

Table 2. Description of the parameters used in the model. Each
symbol represents a specic epidemiological or demographic factor
involved in the dynamics of foot-and-mouth disease.

Symbol Interval Value Unit Source
Λ 50-150 50 day−1 Assumed
β 0.18-0.32 0.21 day−1 [3]
γ 0.1-0.3 0.246 day−1 [3]
α 0.001-0.2 0.1154 day−1 Assumed
δ 0.001-0.2 0.1246 day−1 Assumed
τ 0.00001-0.03 0.01346 day−1 Assumed
σ 0.001-0.2 0.1714 day−1 Assumed
θ 0.2-0.85 0.6871 day−1 [11]
η 0.00001-0.1 0.00123 day−1 Assumed
µ 0.001-0.2 0.124 day−1 [3]
d 0.00001-0.25 0.003 day−1 Assumed
ϵ 0.00001-0.01 0.00016 day−1 [3]

Table 3. Parameter values used in the model, including their re-
spective intervals, xed values, units, and sources. Parameters
without a cited source are assumed for simulation purposes.
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4.2. Numerical simulation. We present numerical simulations of the model in (2)
to analyze foot-and-mouth disease transmission dynamics. The simulations exam-
ine vaccination eects on susceptible cattle recruitment, infectious cattle recovery,
and the impact of animal slaughter on viral evolution, with all results displayed on
a monthly timescale.

Figures 3 show rapid disease spread within the cattle population. The left gure
(σ < µ, R0 = 61484) demonstrates high infection rates where infectious individuals
dominate, while the right gure (σ > µ, R0 = 50757) shows exposed individuals
increasing rapidly. In both cases, vaccination reduces but does not eliminate infec-
tions, leading to endemic persistence.

Figure 3. Disease dynamics with σ < µ (R0 = 61484). Vaccina-
tion reduces transmission but fails to achieve disease elimination

Figure 4. Disease dynamics with σ > µ (R0 = 50757). Vaccina-
tion reduces transmission but fails to achieve disease elimination

Figure 5 presents a controlled outbreak scenario (R0 = 0014) where vaccination
signicantly reduces transmission. In this case, slaughter policies show minimal
impact, and the disease is eventually eradicated through vaccine-induced immunity.

Figure 6 demonstrates that vaccination with at least 75% ecacy leads to com-
plete disease elimination within 30 months. The results show eective protection
of the cattle population and sustained disease-free conditions when this vaccination
threshold is maintained.
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Figure 5. Disease elimination under eective vaccination (R0 =
0014). Parameters: β = 00012, τ = 0001346, σ = 0001714,
θ = 07871.

Figure 6. Population dynamics with R0 < 1. Vaccination (EV ≥
75%) achieves disease elimination within 30 months.

5. Conclusion

We developed a deterministic ordinary dierential equation model with initial
conditions to analyze foot-and-mouth disease dynamics incorporating vaccination.
Our analysis established both local and global stability of the disease-free equilib-
rium through examination of the basic reproduction number R0 [24]. Parameter
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estimation enabled the evaluation of strategies for mitigating secondary infections,
while numerical simulations validated our theoretical ndings. These results demon-
strate that eective vaccination plays a pivotal role in establishing robust immunity
and substantially decreasing secondary transmission rates.

Given Chad’s heavy reliance on pastoral livestock production systems, future
research should employ metapopulation modeling approaches to elucidate disease
spread patterns during animal movements. Additionally, cost-eectiveness analyses
of treatment strategies will be essential for optimizing animal healthcare expendi-
tures while maintaining disease control ecacy.

While our deterministic framework provides key insights, future work could in-
tegrate:

Data assimilation from mobile livestock surveillance;
This interdisciplinary approach would bridge the gap between theoretical rigor

and eld applicability in Chad’s pastoral context.
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