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OPTIMIZATION METHODS FOR THE QUADRATIC

EIGENVALUE ASSIGNMENT PROBLEM WITH BOUNDED

FEEDBACK CONTROLLER

MOHAMED A. ANIS, SHAIMAA Y. ABDELKADER, EL-SAYED M.E. MOSTAFA

Abstract. This work considers the quadratic eigenvalue assignment problem

for vibrating structures by state feedback. A nonlinear least–squares formu-

lation of the problem with a semismooth objective function is considered. A

Levenberg–Marquardt method that uses a nonmonotone trust region com-

bined with a line search backtracking strategy is proposed to tackle the prob-

lem. Global convergence and local superlinear/quadratic convergence rates of

the algorithm are established. Moreover, a logarithmic barrier interior–point

method is addressed to tackle an inequality constrained problem resulting from

incorporating an upper bound on the computed feedback controllers. Numer-

ical results are given to demonstrate the performance of proposed methods.

1. Introduction

In this article, we consider the linear time–invariant quadratic control system

Mẍ(t) +Dẋ(t) +Nx(t) = Bu(t), (1)

where x(t)  IRn is the state vector, u(t) = IRp is the control vector, and M,D,N  IRn×n,
B  IRn×p are given constant matrices, where M is assumed to be nonsingular. Models
of the form (1) frequently arise in a wide range of applications in vibration and structural
analysis. In particular, the quadratic eigenvalue assignment problem (QEAP) is the focus
of this work, see e.g., the survey [24] as well as [1, 2, 3, 4, 5, 8, 10, 14, 15, 17, 25, 26, 27].
Several studies have proposed various optimization–based methods for solving the partial
QEAP [1, 2, 4, 5, 13, 14, 26]. The algorithms considered in the articles [1, 2, 4, 14] are
mainly for computing feedback controllers of the QEAP with minimum norm. Dierent
approaches based on the method of receptance have been considered by [2, 3, 25, 26, 30].
Algorithms based on multi–step methods have been introduced in the articles [15, 16]. An
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LMI approach was considered in the work by [12]. Moreover, a number of studies have
employed dierent algorithms to tackle the QEAP in [8, 10, 17].

The following control vector is often used to close the system (1)

u(t) = K1ẋ(t) +K2x(t), (2)

which implies the closed system

Mẍ(t) + (D −BK1)ẋ(t) + (N −BK2)x(t) = 0, (3)

where K1 and K2  IRp×n are the feedback matrices.
The second–order system (3) is transformed into rst order as given by the following

lemma.

Lemma 1.1. Assuming that M is nonsingular, then the quadratic control system (3) can
be reduced to the following closed–loop system

ż(t) = Az(t) + Bu(t) = (A+ BK)z(t) (4)

where

A =


0n×n In×n

−M−1N −M−1D


, B =


0n×p

M−1B


, K = [K2 K1], z(t) =


x(t)
ẋ(t)


, (5)

or equivalently as

ż(t) = Ac(K1,K2)z(t), (6)

where

Ac(K1,K2) =


0n×n In×n

−M−1(N −BK2) −M−1(D −BK1)




To address the proposed optimization problem, let λ1,    , λ2n  C be given desired
eigenvalues of the closed–loop system (3) which are closed under conjugation. The QEAP
is to nd feedback matrices K1 and K2  IRp×n that fulll the system

λi(Ac(K1,K2)) = λi, i = 1,    , 2n, (7)

where λi(Ac(K1,K2)) are the eigenvalues of the closed–loop system matrix Ac(K1,K2).

Let r : IR2(p×n) → C2n be the residual vector dened as

r(K1,K2) =




λ1(Ac(K1,K2))− λ1

...

λ2n(Ac(K1,K2))− λ2n


  (8)

The QEAP is to nd matrices K1 and K2 that solve the nonlinear least-squares problem

min
K1,K2∈IRp×n

f(K1,K2) =
1

2

r(K1,K2)
2 =

1

2

2n

i=1

ri(K1,K2)
∗ ri(K1,K2), (9)

where the superscript ∗ denotes the conjugate transpose of a complex number. To simplify
the presentation let K = [K2 K1]  IRp×2n and let κ  IRm be the vector obtained by
stretching K into the vector κ  IRm, where m = 2n  p. Consequently, Problem (9) is
written as

min
κ∈IRm

f(κ) =
1

2
∥r(κ)∥22 =

1

2

2n

i=1

ri(κ)
∗ ri(κ), (10)

where

r(κ) = (r1(κ),    , r2n(κ))
T , (11)

is the residual vector given by (8).
One of the important issues when solving this problem is to replace some undesirable

eigenvalues by assigning them to their corresponding desired values and to leave the rest
unaltered. The problem in this case is known as the partial quadratic eigenvalue assign-
ment; see, e.g., [3, 5, 10, 14, 15, 26]. The considered least-squares approach, however, has
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the freedom to select part or all eigenvalues of the system to be assigned based on the

chosen desired eigenvalues λis. So, the considered approach clearly belongs to the partial
eigenvalue assignment category.

Note that available general–purpose methods like the Matlab solvers lsqnonlin or
fminunc cannot solve Problem (10), where derivatives of the objective function that in-
cludes eigenvalues are required.

The objective function f(κ) holds eigenvalues, however it is known that eigenvalues
are not dierentiable at points where repeated eigenvalues exist, see e.g. [18]. Since an
eigenvalue of a symmetric matrix can be written as the dierence of two convex functions,
then this implies that eigenvalues are semismooth functions; see [23]. This also allows to
assume that the objective function f(κ) is semismooth; see among others [20, 21, 23, 29]
for related works on semismooth problems.

This research primarily aims to apply one of the ideal choices for solving the least-
squares problem (10) and to determine how large the quadratic control system (1) can be
tackled as it is converted into rst order. Therefore, Levenberg–Marquardt method (LM)
comes as the rst choice, because it encompasses various characteristics mainly it uses only
the convenient and often eective approximation of the objective function Hessian and it
handles the rank deciency of this approximate Hessian eciently, see e.g. [6, 7, 21, 29].
In this research an LM method combined with trust region and line search globalization
is proposed to tackle Problem (10). Since the standard LM method uses trust region,
global convergence and local superlinear/quadratic convergence rates are established for
the proposed algorithm under standard assumptions.

To enhance the quality of achieved feedback controllers for example by computing
feedback gain matrices whose norms are bounded, the following inequality constrained
problem is considered:

(CP)


min f(κ) = 1

2

2n
i=1 ri(κ)

∗ ri(κ),
s.t. h(κ) = ub − ∥κ∥22 ≥ 0,

(12)

where ub > 0 is a constant. A well–known approach to tackle this problem is to convert
it into the following logarithmic barrier subproblem:

(BP) min ϕµ̂(κ) = f(κ)− µ log(h(κ)), (13)

where µ > 0 is the barrier parameter. A logarithmic barrier interior–point method solves
the constrained problem (12) by solving approximately the barrier subproblem (13) for
a decreasing sequence converging to zero of the barrier parameters; see e.g., [19]. This
method exhibits asymptotic quadratic rate of convergence. Moreover, it allows for various
solution methods for the underlying linear algebraic equations obtained from the linearized
optimality conditions at each iteration. For large–scale problems a quasi–Newton updated
is considered to approximate the Hessian of ϕµ̂(κ).

The subsequent sections of this research are organized as follows. In the next subsection
some preliminary and basic results are introduced for semismooth functions. In Subsec-
tion 1.2 rst and second derivatives of the objective function are obtained. In Section 2
an LM method is described for nding a local solution of the least–squares problem (10).
In Sections 3 and 4 the global convergence and local superlinear/quadratic rate of conver-
gence of LM method are establish, respectively. In Section 5 a logarithmic barrier method
is proposed to tackle the constrained problem (12). Section 6 is devoted to the numerical
results, where the considered methods are tested on various test problems collected from
dierent sources. The article ends with an appendix including the required derivatives of
the objective function followed by some concluding remarks.

Notations: The symbol ∥ · ∥ denotes the Euclidean norm or the subordinate matrix
norm. The eigenvalues of a matrix M  IRn×n are denoted by λi(M), i = 1,    , n. To

simplify the presentation and as mentioned above the matrix K = [K2 K1]  IR2(p×n)

denotes the augmented feedback gain matrix. Moreover, κ  IRm is the vector obtained by
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stretching K into a column vector, where m = 2np. Sometimes the argument is skipped
from writing like gk is written instead of g(κk).

1.1. Preliminaries. The following are some related denitions and basic results for semis-
mooth functions.

Denition 1.1. (see [29]) Let h : IRm → IRn be locally Lipschitz continuous function
and let Dh be the set of all κ such that h is dierentiable. The generalized Jacobian of h
at the point κ in the sense of Clark is dened by ∂h(κ) = co(∂Bh(κ)), where co means
convex hull and

∂B h(κ) =


M  IRn×m : M = lim

κk→κ
h(κk)

T , κk  Dh


,

is called the B–dierential of h at κ.

Denition 1.2. (see [23]) A locally Lipschitz function h : IRm → IRn is semismooth
(respectively, strongly semismooth) at κ  IRm if it is directionally dierentiable at κ and
for any M  ∂h(κ+ d) it holds that

h(κ+ d)− h(κ)−Md = o(∥d∥) (O(∥d∥2)),
where the notation G = o(α) means ∥G∥α → 0 as α → 0.

The following helping result is needed later on (see, [29, Proposition 2.1]).

Lemma 1.2. Let κk ⊂ IRm be a convergent sequence with a limit point κ∗  IRm. Then
the following statements are satised:

(a) The residual function r(κ) is semismooth, which implies that for any Jk  ∂C r(κk),

∥r(κk)− r(κ∗)− Jk(κk − κ∗)∥ = o(∥κk − κ∗∥)
(b) If J(κ) is Lipschitz continuous, then the function r(κ) is strongly semismooth.

This implies that for any Jk  ∂C r(κk) we have

∥r(κk)− r(κ∗)− Jk(κk − κ∗)∥ = O(∥κk − κ∗∥2)
Let D ⊆ IRm be the set of all κ  IRm where f is dierentiable. Since the set D is

open, then it is convenient to replace it by the following subset:

Ω(κ0) := κ  D : f(κ) ≤ f(κ0) , (14)

where κ0  IRm is given, and it is assumed that Ω(κ0) is compact.

1.2. Required derivatives. Assume that the function Λ(Ac(κ)) := diag(λ1,    ,λ2n) is
dierentiable and let Q(Ac(κ))  C2n×2n be an orthogonal matrix whose columns qis are
the eigenvectors of Ac that satisfy

qTi qi = 1,

qTi Ac(κ)qi = λi(κ), i = 1,    , 2n

Then it holds that

∂λi(κ)

∂κk
= qTi

∂Ac(κ)

∂κk
qi, i = 1,    , 2n, k = 1,    ,m (15)

First and second–order derivatives of the objective function (10) are given by the following
two lemmas; see [18, Lemmas 3.2 and 3.3 ] for the proof of similar results.

Lemma 1.3. Let Λ(Ac(κ)) and Q be as dened above. Then the gradient vector of the
objective function f is given by

g(κ) = Re

J(κ)T r(κ)


, (16)
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where Re· denotes the real–part of a complex number, r(κ) = (λ− λ)  C2n is the vector
of residuals given by (8), and J(κ) is the 2n×m Jacobian matrix:

J(κ) =




(qT1 Be1e
T
1 q1)    (qT1 Bepe

T
2nq1)

...
. . .

...

(qT2n Be1e
T
1 q2n)    (qT2n Bepe

T
2nq2n)


 , (17)

where the j := (k, l)th component of g(κ) is given by:

gj(κ) = Re

qT1 Beke

T
l q1(λ1(Ac)− λ1)+ · · ·+ qT2n Beke

T
l q2n(λ2n(Ac)− λ2n)


, j = 1,    ,m

(18)
and ei is a vector with 1 at the ith position and all other entries are zeros.

Lemma 1.4. Let Λ(Ac(κ)) and Q be as dened above. Then the Hessian of the objective
function f is given by

2f(κ) = Re

J(κ)∗J(κ) +

2n

i=1

ri(κ)
∗
∂2ri(κ)

∂κk∂κl


, (19)

where J(κ) is given by (17) and ∂2ri(κ)∂κk∂κl are the second derivative terms given by

∂2ri(κ)

∂κk∂κl
=

2n

j=1,j ̸=i

[(qTi Beke
T
l qj)(q

T
j
Beke

T
l qi) + (qTj Beke

T
l qi)(q

T
i
Beke

T
l qj)]

λi(Ac(κ))− λj(Ac(κ))
, i = 1,    , 2n

(20)

Note that the required term of the Hessian of f for Gauss–Newton or LM methods is
the following

H(κ) = Re

J(κ)∗J(κ)


, (21)

where the second term is not required.

2. Levenberg–Marquardt method for QEAP

Gauss–Newton and Levenberg–Marquardt methods come as the rst choice when solv-
ing the nonlinear least–squares problem (10). Gauss–Newton method for instance as it
solves Problem (10) requires the solution of the following algebraic system of linear equa-
tions every iteration:

H(κk)d = −f(κk), (22)

where f(κk) = Re

J(κk)

∗r(κk)

and H(κk) = Re


J(κk)

∗J(κk)

are given by (16) and

(21), respectively, r(κk) is the residual vector (11) and J(κk) is the Jacobian matrix (17).
However, if J(κk) is rank–decient, Gauss–Newton method might fail. To avoid such a
drawback one possible way is to consider instead a Levenberg–Marquardt method. The
quadratic model for this method is dened as

mk(d) =
1

2
∥rk∥2 + rTk J(κk)

T d+
1

2
dTH(κk)d (23)

Levenberg–Marquardt method is based on solving for d  IRm the following algebraic
system of equations every iteration

(H(κk) + µkI)d = −f(κk), (24)

where µk > 0 is the LM parameter, H(κk) and f(κk) are as dened above. Various
updates for µk are considered in the literature; see e.g., [7] among them are the two
updates µk = βk∥r(κk)∥ and µk = βk∥r(κk)∥2, where βk > 0 is given. In the current work
the rst one is considered for updating µk.
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The following quantities of the actual and predicted reductions of the objective function
their role is to accept the computed step d of the system (24):

aredk(d) = Γk − f(κk + d), (25)

predk(d) = −f(κk)
T d− 1

2
dTH(κk)d, (26)

where

Γk =


fk if k = 0
(ζk−1Ek−1Γk−1 + fk)Ek if k ≥ 1

(27)

and

Ek =


1 if k = 0
ζk−1Ek−1 + 1 if k ≥ 1

(28)

Dene the ratio

ρk =
aredk(d)

predk(d)
, (29)

where according to the value of ρk the computed step d is accepted, otherwise a backtrack-
ing line–search rule is employed according to the following sucient decrease condition:
Compute ik the least non–negative integer i satisfying

f(κk + σidk) ≤ Γk + δσif(κk)
T dk, (30)

and set κk+1 = κk + αkdk with αk = σik , where σ  (0, 1) and δ  (0, 1) are given
constants.

The algorithm of LM for solving the QEAP is stated in the following lines.

Algorithm 2.1. (Nonmonotone LM method for the QEAP)

Let M,D,N , and B be given constant matrices of the control system (1) and λi, i =

1,    , 2n be the desired eigenvalues. Form the matrices A and B according to (5).
Choose 0 < η1 < η2 < 1, 0 < γ1 < 1 < γ2, 0 ≤ ζmin < 1, ζmin ≤ ζmax < 1, 0 < δ < 1,
0 < σ < 1. Let β0 = µ0 > µ̄ > 0, ζmin ≤ ζ0 ≤ ζmax, 0 < ϵtol < 1 be given. Set
K0 = [K0

2 K0
1 ] for the given starting feedback matrices K0

1 and K0
2 and stretch K0 into

the column vector κ0. Compute r(κ0), f(κ0), and J(κ0)
For k = 0, 1, 2,   

1. Solve for dk the algebraic system of equations (24).
2. Compute the quantities aredk(d) and predk(d) by (25)–(28), and set

ρk =
aredk(dk)

predk(dk)


3. If ρk ≥ η1, set κk+1 = κk + dk and go to Step 4. Otherwise, compute the
step–length αk > 0 that satises the sucient decrease condition (30) and set
κk+1 = κk + αkdk.

4. Choose ζk  [ζmin, ζmax] and update βk+1 by

βk+1 =





γ2βk if ρk ≤ η1
βk if ρk  (η1, η2)
maxγ1βk, µ̄ if ρk ≥ η2

5. Compute f(κk+1) by (8) & (10), J(κk+1) by (17), f(κk+1) by (16), and set
µk+1 = βk+1∥r(κk+1)∥.

6. If ∥f(κk+1)∥ ≤ ϵtol, stop; otherwise compute H(κk+1) by (21), set k ← k + 1
go to Step 1.

End (For)

Remark 1. The main objective when solving Problem (10) is to achieve some κk such
that f(κk) converges to zero. Therefore, a suitable alternative stopping condition might be


f(κk) < ϵtol, (31)
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where ϵtol  (0, 1).

The matrix H(κk) + µkI is symmetric and positive denite. So, the system (24) has a
solution and Step 1 of Algorithm 2.1 is well–dened. In order to prove that Algorithm 2.1
is well–dened it is assumed that the algorithm does not terminate after a nite number
of iterations, which means that

g(κk) ̸= 0 ∀ k ≥ 0 (32)

Moreover, the two index sets are dened by:

I :=  k : ρk ≥ η1, J :=  k : ρk < η1
The following well–known lemma gives a lower bound of the predicted decrease.

Lemma 2.5. Let dk be computed by (24). Then the following inequality holds for all k ≥ 0

predk = mk(0)− mk(dk) ≥ 1

2
∥gk∥ min


∥dk∥, ∥gk∥

∥Hk∥

 (33)

Lemma 2.6. Let κk be generated by Algorithm 2.1. Then f(κk) ≤ Γk for all k ≥ 0.

Proof. If k = 0, the result follows by (27). For k ≥ 1 let us consider the two cases: k  I
and k  J . First, the case when k  I yields ρk ≥ η1, which by Lemma 2.5 and (24)
implies that

Γk − f(κk+1) ≥ 1

2
η1 ∥gk∥min


∥dk∥, ∥gk∥

∥Hk∥

≥ 0

So, Γk ≥ f(κk+1). If k  J , then the computed trial step d will not be accepted and a
backtracking line–search rule is applied. By (24) one has

gTk dk = −dTk (Hk + µkI)dk ≤ 0,

and by the denition of Γk and Ek one has

Γk+1 = (ζkEkΓk + f(κk+1))Ek+1

≥ (ζkEkf(κk+1) + f(κk+1))Ek+1 = f(κk+1)

holds for all k ≥ 0, which completes the proof. □

Lemma 2.7. Let κk be an innite sequence generated by Algorithm 2.1. Then the
algorithm is well-dened and the non–monotone line search rule (58) terminates after a
nite number of iterations.

Proof. By Lemma 2.5 one has predk ≥ 0. To prove the rst statement one needs to show
that

predk ̸= 0 ∀ k ≥ 0

By contradiction, let us assume that there exists an integer i ≥ 0 such that predi = 0.
Then from (32) and Lemma 2.5 one has di = 0. So, from (24) it follows that f(κi) = 0,
which contradicts with (32).

Next, by Lemma 2.6 then Γk ≥ f(κk) holds for all k ≥ 0. Consequently, from (24) it
follows for all dk ̸= 0 that

f(κk)
T dk = −dTk (Hk + µkI)dk < 0,

which means that dk is descent direction for f at κk. This implies that Armijo backtracking
rule terminates after a nite number of iterations, i.e., there exists an integer i > 0 such
that

f(κk + σidk) ≤ f(κk) + δσif(κk)
T dk

□
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3. Global convergence

The following assumptions are imposed to show the global convergence of Algorithm 2.1.

Assumption 3.1. Assumed that:

(i) The level set Ω(κ0) is closed and bounded.
(ii) The function g(κ) = f(κ) is semismooth in Ω(κ0).
(iii) The function r(κ) is Lipschitz continuous in Ω(κ0), i.e., there exists a constant

L > 0 such that

∥r(ξ)− r(η))∥ ≤ L∥ξ − η∥ ∀ ξ, η  Ω(κ0) (34)

(iv) There exists a constant ν1 > 0 such that

dTk J
T
k Jkdk ≥ ν1∥dk∥2 ∀ dk  IRn, k ≥ 0 (35)

It follows from (34) that

∥J(κ)∥ ≤ L ∀ κ  Ω(κ0) (36)

Lemma 3.8. Let κk be generated by Algorithm 2.1. Then κk remain in Ω(κ0).
Moreover, the sequence Γk is non-increasing monotonically and is convergent.

Proof. If k = 0, the result obviously holds. Assume that κk  Ω(κ0) for all k ≥ 0.
Then f(κ) ≤ f(κ0) for all k ≥ 0. By the denition of Γk in (27) and (28) Γk is a convex
combination of f(κ0), f(κ1),    , f(κk). So, Γk ≤ f(κ0). From the proof of Lemma 2.6
we have Γk+1 ≤ f(κ0). Hence, f(κk+1) ≤ Γk ≤ f(κ0) which means that κk+1  Ω(κ0).

On the other hand, by the denition of Γk and Γk ≥ f(κk+1) we have

Γk+1 = (ζkEkΓk + f(κk+1))Ek+1 ≤ (ζkEkΓk + Γk)Ek+1 = Γk

So, Γk is non-increasing monotonically and since Γk ≥ 0, then Γk is convergent. □
The following lemma shows that under the imposed assumptions the step-size αk is

bounded below.

Lemma 3.9. Let Assumption 3.1 holds and the sequence κk be generated by Algo-
rithm 2.1. Then there exists a constant 0 < c < 1 such that

αk > c ∀ k ≥ 0

Proof. If αk = 1, then there is nothing to prove. Let αk ≤ 1. From Step 3 of Algorithm 2.1
we have

f(κk + αkdk) > Γk + δαkg
T
k dk (37)

Since g(κ) is semismooth in Ω(κ0), then

f(κk + αkdk) = f(κk) + αkg
T
k dk +

1

2
α2
kd

T
k G(ξk)dk (38)

where G(ξk) is the generalized Jacobian of g(κ) at κk and ξk  (κk,κk + αkdk). Since
f(κk) ≤ Γk, then (37) and (38) imply that

−(1− δ)gTk dk <
1

2
αkd

T
k G(ξk)dk

By Assumption 3.1 and Lemma 3.8 there exists a constant ν2 > ν1 such that

∥G(ξ)∥ ≤ ν2 ∀ ξ  Ω(κ0),

which leads to

−(1− δ)gTk dk <
1

2
αkν2∥dk∥2

Since predk ≥ 0, then (35) implies that

(1− δ)

2
ν1∥dk∥2 ≤ 1

2
αkν2∥dk∥2 (39)

The result follows from (39) by choosing c = ((1− δ)ν1)ν2. □
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Lemma 3.10. Let Assumption 3.1 be satised and κk be an innite sequence generated
by Algorithm 2.1. Then

(1− ζmax)γ ∥gk∥ min

∥dk∥, ∥gk∥

∥Hk∥

≤ Γk − Γk+1, (40)

where γ = min 1
2
η1,

1
2
δc.

Proof. First, let k  I, which means that ρk ≥ η1. Consequently, from Lemma 2.5 and
the denition of ρk we have

Γk − ∥r(κk+1)∥ ≥ η1predk ≥ 1

2
η1∥gk∥ min


∥dk∥, ∥gk∥

∥Hk∥

,

which implies that

∥r(κk+1)∥ ≤ Γk − η1
2

∥gk∥ min

∥dk∥, ∥gk∥

∥Hk∥

 (41)

Second, let k  J . From Lemma 2.5 we obtain

gTk dk ≤ −1

2
∥gk∥ min


∥dk∥, ∥gk∥

∥Hk∥



From Lemma 3.9 and the sucient decrease condition (30) we have

∥r(κk+1)∥ ≤ Γk − η1
2
δc ∥gk∥min


∥dk∥, ∥gk∥

∥Hk∥

 (42)

So, combining (41) and (42) gives

∥r(κk+1)∥ ≤ Γk − γ ∥gk∥ min

∥dk∥, ∥gk∥

∥Hk∥

, ∀ k ≥ 0, (43)

where γ = min 1
2
η1,

1
2
δc.

On the other hand, by the denition of Γk it holds that

Γk+1 ≤ Γk − γ
∥gk∥
Ek+1

min

∥dk∥, ∥gk∥

∥Hk∥



But from (28) we have

Ek+1 = 1 +

k

j=0

j

i=1

ζki

≤ 1 +

k

j=0

ζj+1
max ≤

∞

j=0

ζjmax =
1

1− ζmax


Hence, 1− ζmax ≤ 1Ek+1. Therefore,

(1− ζmax)γ ∥gk∥ min

∥dk∥, ∥gk∥

∥Hk∥

≤ Γk − Γk+1,

as required. □

Lemma 3.11. Let Assumption 3.1(i) holds and κk be an innite sequence generated by
Algorithm 2.1. Then the sequence µk is bounded.

Proof. Assume that µk is unbounded. Then there exists a subsequence of µk such
that

µk → +∞ as k → +∞, (44)
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where without loss any of the generality we denoted the subsequence by µk. From the
denition of aredk and predk and using (24) and (36) we obtain

predk = −gTk dk − 1

2
dTk Hkdk

= dTk (J
T
k J + µkI)dk − 1

2
dTk Hkdk

=
1

2
dTk Hkdk + µk∥dk∥2

≥ µk∥dk∥2, (45)

and
aredk − predk

 =
Γk − f(κk + dk) + gTk dk +

1

2
dTk J

T
k Jkdk



≤
Γk − f(κk) +O(∥dk∥)2



≤ 2f(κ0) +O(∥dk∥)2 (46)

Consequently, (45) and (46) imply that

ρk − 1
 = aredk − predk

predk
≤ 2f(κ0) +O(∥dk∥)2

µk ∥dk∥2
→ 0 as µk → +∞

That is ρk → 1 as µk → +∞, which means that ρk ≥ η2 holds for all k suciently large.

By Step 6 of Algorithm 2.1 there exists M > µ̄ such that

βk < M as k → +∞

Since f(κ) is continuously dierentiable on Ω(κ0). Then by Assumption 3.1(i) and Lemma 3.8
f(κk) is bounded for all k ≥ 0. But by the structure of µk we have µk is bounded as
k → +∞ contradicting with (44). □

The following theorem establishes the global convergence of the LM method.

Theorem 3.1. Let Assumption 3.1 holds and κk be generated by Algorithm 2.1. Then

lim
k→∞

∥gk∥ = lim
k→∞

∥JT
k rk∥ = 0 (47)

Proof. Assume that (47) does not hold. Then there exists an ϵ0 > 0 such that

∥gk∥ > ϵ0 ∀ k ≥ 0 (48)

From Lemma 3.11 together with (36) and (48) we have

(1− ζmax)γ ϵ0 min

∥dk∥, ϵ0

L2


≤ Γk − Γk+1

But from Lemma 3.8 the sequence Γk is non–increasing monotonically and is convergent.
Consequently, by summing up the last inequality for all k ≥ 0 yields

(1− ζmax)γ ϵ0

∞

k=0

min

∥dk∥, ϵ0

L2


≤

∞

k=0

(Γk − Γk+1) < +∞,

which implies that

lim
k→∞

∥dk∥ = 0 (49)

On the other hand, by Assumption 3.1 and Lemma 3.11 there exists a constant ν3 > 0
such that

∥JT
k Jk + µkI∥ ≤ ν3 ∀ k ≥ 0

Hence, this together with (24) and (49) give

∥gk∥ ≤ ∥JT
k Jk + µkI∥ · ∥dk∥ ≤ ν3 ∥dk∥ → 0, as k → +∞,

contradicting with (48), which completes the proof. □
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4. Local convergence

Let K∗ be the solution set of the problem (10). To establish the local convergence rate
it is assumed that the sequence κk generated by Algorithm 2.1 converges to a solution
κ∗  K∗.

Assumption 4.1. Assume that for any κ∗  K∗ every J(κ∗) has full row rank.

Lemma 4.12. Let Assumption 3.1(i) holds. Then there exists an integer k > 0 such that

ρk ≥ η2 for all k ≥ k, where ρk is given by (29) and 0 < η2 < 1 is a given constant.

Proof. The computed step by (24) is also a solution to the problem

min
d∈IRm

mk(d) =
1

2
∥r(κk) + Jkd∥2 + µk

2
∥d∥2 (50)

In fact, the rst–order optimality conditions of (50) yields (24). Moreover, by Lemma 3.11
the sequence µk is bounded and since ∂B r(κk) ⊂ ∂C r(κk), then Lemma 1.2 gives

∥dk∥2 ≤ 2

µk
mk(κ∗ − κk)

=
1

µk
∥r(κk) + Jk(κ∗ − κk)∥2 + ∥κ∗ − κk∥2

=
1

µk
∥r(κk)− r(κ∗)− Jk(κk − κ∗)∥2 + ∥κk − κ∗∥2

= o(∥κk − κ∗∥2) + ∥κk − κ∗∥2 → 0 as k → +∞

From Lemma 2.6 and using (24) and (35) one has

aredk − η2 predk = Γk − f(κk + dk)− η2 predk

≥ f(κk)− f(κk + dk)− η2 predk

= −gTk dk − 1

2
dTk J

T
k Jkdk + o(∥dk∥2)− η2 predk

= (1− η2) predk + o(∥dk∥2)

=
(1− η2)

2


dTk J

T
k Jkdk + 2µk∥dk∥2


+ o(∥dk∥2)

≥ ∥dk∥2
 (1− η2)

2
ν1 +

o(∥dk∥2)
∥dk∥2


≥ 0,

which implies that there exists an integer k > 0 such that

aredk ≥ η2 predk ∀ k ≥ k

Therefore, ρk ≥ η2 for all k ≥ k. □
Next, consider the following lemma; see e.g., [11, Theorem 3.1.4].

Lemma 4.13. Let A1 and A2  IRn×n and A1 is nonsingular. If ∥A−1
1 A2∥ ≤ c < 1, then

A1 + A2 is nonsingular and

∥(A1 + A2)
−1∥ ≤ ∥A−1

1 ∥
1− ∥A−1

1 A2∥


Lemma 4.14. Let Assumptions 3.1 and 4.1 hold. Then there exists an integer k̄ > 0 and
a constant ν > 0 such that

∥(Hk + µkI)
−1∥ ≤ 2ν ∀ k ≥ k̄

Proof. From Assumption 4.1 and Lemma 1.2 there exists a neighborhood

N (κ∗, τ) = κ : ∥κ− κ∗∥ < τ
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and a constant ν > 0 such that

∥(J(κ)TJ(κ))−1∥ ≤ ν ∀ J(κ)  ∂B r(κ) ∀ κ  N (κ∗, τ)

In addition, by Step 6 of Algorithm 2.1 and Lemma 4.12 there exists an integer k > 0 and
a constant M > µ̄ > 0 such that

µk = βk∥r(κk)∥ ≤ M∥r(κk)∥ → 0 ∀ k ≥ k,

implying that there exists an integer k > 0 such that

µk ≤ 1

2ν
∀ k ≥ k

On the other hand, since κk converges to κ∗, then there exists an integer k̃ > 0 such

that κk  N (κ∗, τ) for all k ≥ k̃. So, one has

∥µk(J(κ)
TJ(κ))−1∥ ≤ 1

2
∀ k ≥ k̄,

where k̄ = max k, k, k̃. By using Lemma 4.13 this gives

∥(Hk + µkI)
−1∥ ≤ ∥H−1

k ∥
1− ∥µkH

−1
k ∥ ≤ 2ν ∀ k ≥ k̄

□
The following theorem establishes the local convergence of the LM method.

Theorem 4.2. Suppose that both Assumptions 3.1 and 4.1 hold. Moreover, let κk be
an innite sequence generated by Algorithm 2.1 and converging to some solution κ∗  K∗.
Then the following statements hold:

(a) The sequence κk converges to κ∗ superlinearly, i.e.,

∥κk+1 − κ∗∥ = o(∥κk − κ∗∥)
(b) If J(κ) is Lipschitz continuous on IRm, then the sequence κk converges to κ∗

quadratically, i.e.,

∥κk+1 − κ∗∥ = O(∥κk − κ∗∥2)
Proof. From Lemmas 4.12 and 4.14 and since Assumptions 3.1 and 4.1 hold, then there
exists an integer k̄ > 0 and a constant ν > 0 such that

κk+1 = κk + dk, ∥(Hk̄ + µk̄I)
−1∥ ≤ 2ν ∀ k ≥ k̄

Moreover, Lemma 4.12 and (34) imply that there exists a constant M > µ̄ > 0 such that

µk = βk∥r(κk)∥ ≤ M∥r(κk)∥
= M∥r(κk)− r(κ∗)∥
≤ ML∥κk − κ∗∥ ∀ k ≥ k̄

Then, from (24) and (36) we have

∥κk+1 − κ∗∥ = ∥κk + dk − κ∗∥
= ∥κk − κ∗ − (Hk + µkI)

−1JT
k r(κk)∥

≤ ∥(Hk + µkI)
−1∥ ∥JT

k r(κk)− (Hk + µkI)(κk − κ∗)∥
≤ 2ν∥JT

k r(κk)− JT
k Jk(κk − κ∗)− µk∥κk − κ∗∥

≤ 2ν

∥Jk∥ ∥r(κk)− Jk(κk − κ∗)∥+ µk∥κk − κ∗∥



≤ 2ν L∥r(κk)− r(κ∗)− Jk(κk − κ∗)∥+ 2MLν∥κk − κ∗∥2
By Lemma 1.2 and since ∂B r(κk) ⊂ ∂C r(κk), then the above inequality yields

∥κk+1 − κ∗∥ = o(∥κk − κ∗∥) +O(∥κk − κ∗∥2),
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showing the superlinear rate of the sequence. In addition, if J(κ) is Lipschitz continuous
on IRm, then by Lemma 1.2 it holds

∥κk+1 − κ∗∥ = O(∥κk − κ∗∥2) +O(∥κk − κ∗∥2)
= O(∥κk − κ∗∥2),

showing the quadratic rate of the sequence. □

5. Log–barrier interior–point method for the QEAP

In order to solve the barrier subproblem (13) rst and second–order derivatives of the

function ϕµ̂(κ) are required, which are given by the following lemma.

Lemma 5.15. The rst and second–order derivatives of the barrier function ϕµ̂(κ) of the
subproblem (13) are

ϕµ̂(κ) = f(κ)− µ

h(κ)
h(κ)

= f(κ) +
2µ

h(κ)
κ, (51)

2ϕµ̂(κ) = 2f(κ) +
µ

h(κ)2
h(κ)h(κ)T − µ

h(κ)
2h(κ)

= 2f(κ) +
4µ

h(κ)2
κκT +

2µ

h(κ)
Im, (52)

where f(κ) and 2f(κ) are given by (16) and (19), respectively, and Im is the identity
matrix.

Proof. The proof is straightforward and therefore is omitted. □
Newtons method for solving the barrier subproblem (13) at iteration κk is based on

computing pk an approximate solution of the equation

2ϕµ̂(κk)pk = −ϕµ̂(κk) (53)

The optimal Lagrange multiplier of the constrained problem (12) is commonly esti-
mated by

z∗ ≈ µh(κ), (54)

where the Lagrangian function associated with the constrained problem (12) is dened by

ℓ(κ, z) = f(κ)− z h(κ)

By using (51)–(52) the algebraic system of equations (53) is rewritten as

2f(κk) +

zk
h(κk)

h(κk)h(κk)
T − zk2h(κk)


pk = −


f(κk)− zkh(κk)


 (55)

A suitable approach to solve (55) is to apply one of the iterative methods GMRES,

QMR, or LSQR, which can solve such a system with 2ϕµ̂(κ) indenite. The follow-
ing heuristic, see [19, pp 50], is considered to maintain positive denite Hessian Mk :=

2ϕµ̂(κk) as follows. Compute the spectral decomposition of Mk:

Mk = QΛQT 

Replace Mk by the perturbed matrix Mk +∆Mk = Q(Λ + diag(τi))Q
T , where ∆Mk a

correction matrix is such that λmin(Mk +∆Mk) ≥ δ, where δ  (0, 1) is given and

τi =


0, λi(Mk) ≥ δ

δ − λi, λi(Mk) < δ

The resulting perturbed Hessian matrix Mk +∆Mk is strictly positive denite.
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For large–scale problems the Hessian 2ϕµ̂(κk) given by (52) is approximated by the
following

2ϕµ̂(κ) ≈ Hk +
4µ

h(κk)2
κkκ

T
k +

2µ

h(κk)
Im, (56)

where Hk is the SR1 quasi–Newton update of 2f(κk) which is given by:

Hk+1 = Hk +
(yk −Hksk)(yk −Hksk)

T

(yk −Hksk)T sk
, (57)

where sk = κk+1 − κk and yk = f(κk+1)−f(κk).
Having obtained an approximate solution pk of (55), a step–length αk is computed by

a backtracking rule such that the following sucient decrease condition holds

ϕµ̂k (κk + αkpk) ≤ ϕµ̂k (κk) + ηαkϕµ̂k (κk)
T pk, (58)

where η  (0, 1
2
).

The logarithmic barrier Algorithm which solves the barrier subproblem (BP) for a
decreasing sequence µk ↓ 0 of the barrier parameter is stated in the following lines.

Algorithm 5.1. (Logarithmic barrier algorithm for solving Problem (CP))
Initialization: Let M,D,N , and B be given constant matrices of the control system (1)

and λi, i = 1,    , 2n be the desired eigenvalues. Form the matrices A and B according to
(5).

Specify the parameters µ0 > 0, a0  (0, 1), η  (0, 1
2
), and the nal tolerance ϵtol  (0, 1).

Create the initial vector κ0 as explained in Algorithm 2.1 such that h(κ0) > 0, and
compute J0 and r0.
For k = 0, 1, 2,    ,

(1) Compute a Lagrange multiplier estimate zk = µkh(κk).
(2) Compute the approximate solution pk of (55) by using one of the described meth-

ods.
(3) Compute a step–length αk > 0 such that the sucient decrease condition (58)

holds.
(4) Set κk+1 = κk + αkpk and compute r(κk+1), J(κk+1), h(κk+1), and h(κk+1).

(5) If zkh(κk) ≤ ϵtol, stop.

(6) Compute 2ϕµ̂k (κk+1) by (52) or by (56)–(57), choose µk+1  (0, akµk), set
k := k + 1 and go to Step 1.

Remark 2. From Algorithm 5.1 the following points are in order:

• The convergence test of Algorithm 5.1 is based on satisfying the complementar-
ity condition z∗h(κ∗) = 0 at the achieved local solution. A stopping condition
based on fullling the KKT conditions of the constrained problem (12) is another
alternative.

• Instead of leaving the barrier parameter µ xed until the optimality conditions
are satised to certain accuracy an adaptive strategy for updating µ at every
iteration has shown a nice performance numerically.

• The method switches to compute 2ϕµ̂k (κ) using the quasi–Newton update (56)–
(57) when the problem size is large.

6. Numerical results

In this section some preliminary testing are given for LM method of Algorithm 2.1 and
the logarithmic barrier interior–point method of Algorithm 5.1 denoted by (BM). The two
methods are compared with Newtons method (NM) [28]. The methods are implemented
using Matlab and all computations are carried out on a Laptop with 2.5 Ghz Core i7–6500
CPU and 8.00 GB RAM.
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The following values have been assigned to the parameters of Algorithm 2.1:

η1 = 01, η2 = 08, γ1 = 01, γ2 = 10, ζmin = 10−4,

ζmax = 09, δ = 01, σ = 04, µ̄ = 10−4, β0 = 0001

Moreover, ζk is chosen constant of value ζk = 05 in the whole implementation. The
following values have been assigned to the parameters of Algorithm 5.1:

µ0 = 005, a0 = 01, η = 10−4

In the following ve test problems are considered in details that quite demonstrate the

performance of proposed methods. The vector λ of desired eigenvalues is chosen in each
test example according to a specic need. The methods are terminated if the stopping
conditions are satised, where ϵtol = 10−6.

Example 6.1. Consider the quadratic control system (1) with the following data matrices;
see [2]:

M =


1 0
0 2


, D =


5 −5

−5 5


, N =


10 −5
−5 15


, B =


1 1
0 −2




The open–loop system matrix has the eigenvalues −5,−25,±22361i. The desired eigen-

values λis are chosen as −5,−25,−10 ± 10i, where the rst two eigenvalues are left
unaltered.

The three methods LM, NM, and BM successfully converged to three dierent local so-
lutions of the least–squares problem (10) and required 9, 7, and 12 iterations, respectively.
The achieved feedback gain matrices by the methods LM and BM are:

KLM
1 =


−1.8819 −1.0593

1.7637 1.8819


, KLM

2 =


2.7401 1.2262

0.6597 −2.7401


,

KBM
1 =


−1.7453 −1.7333

1.4904 1.7453


, KBM

2 =


2.6188 2.0294

0.0065 −2.6188


.

”Table 1 shows the norms of feedback gain matrices achieved by the three methods, along
with the results reported in [2].

Table 1. Example 6.1: Norms of the achieved feedback controllers

LM NM [28] BM Method of [2]

∥K1∥ 3.3261 3.3579 3.3613 3.1739
∥K2∥ 3.1811 3.8871 3.8211 4.7468

Example 6.2. This test problem is from [8], which has the following data matrices:

M = 10I3, D = diag(5, 25, 5),

N =




1500 −500 0
−500 600 −100

0 −100 100


 , B =




01 −02
02 −03

−05 01


 

The open–loop system has the eigenvalues −02292±131266i,−01550±63588i,−02408±
26669i, where the desired eigenvalues λis are chosen as −05±100i,−03±50i,−04±30i.

The methods LM, NM, and BM require 9, 228 and 19 iterations, respectively, to reach
three dierent local solutions. The achieved feedback gain matrices by the methods LM
and BM are

KLM
1 =


−114.4362 322.4073 −231.4457

394.8490 226.2556 −334.1392


, KLM

2 =


124.5213 306.1549 −72.1854

−343.6139 −205.3938 104.6945


,

KBM
1 =


−425.0310 178.4601 −95.6816

224.9837 −138.1606 −489.5446


, KBM

2 =


38.0041 149.1344 −118.0718

−35.2278 25.2606 −17.9726


.
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Table 2 shows the norms of achieved feedback gain matrices by the three methods together
with that obtained by [8].

Table 2. Example 6.2: Norms of the feedback controllers

LM NM [28] BM Method of [8]

∥K1∥ 610.9439 572.5650 592.4900 3.7244e+04
∥K2∥ 509.4737 224.5839 195.4521 285.3595

Example 6.3. This test problem was considered in [17] and has the following data ma-
trices:

M = I5, D = diag

02, 02

√
3, 04, 02

√
3, 02


,

N =




2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2



, B =


I3

02×3




The open–loop system has the eigenvalues −01697±19219i,−01362±17244i,−01331±
14080i,−01370±09919i,−01704±04895i, where the attempt is to assign the eigenvalues
to the desired values −1±3i,−1±25i,−1±2i,−1±i,−1±05i. The methods LM, NM, and
BM require 16, 7, and 7 iterations to reach three dierent local solutions. The achieved
feedback gain matrices by the methods LM and BM are

KLM
1 =




−0.2179 0.0015 0.0367 −0.0036 0.0552

0.0073 −0.1764 −0.0043 0.0827 0.0008

0.0325 0.0062 −0.1129 −0.0070 0.0417


 ,

KLM
2 =




−0.0374 0.0180 −0.0009 0.0287 0.0039

0.0081 −0.0387 0.0355 0.0042 0.0037

−0.0006 0.0045 −0.0337 −0.0202 −0.0004


 ,

KBM
1 =




−0.2133 0.0033 0.0378 −0.0008 0.0445

0.0019 −0.1689 0.0023 0.0856 −0.0042

0.0360 −0.0027 −0.1244 −0.0005 0.0343


 ,

KBM
2 =




−0.0376 0.0067 0.0026 0.0023 0.0042

0.0066 −0.0381 0.0026 0.0043 0.0098

−0.0024 0.0090 −0.0344 0.0219 −0.0012


 .

Table 3 shows the norms of achieved feedback gain matrices by the three methods together
with that obtained by [17].

Table 3. Example 6.3: Norms of the feedback controllers

LM NM [28] BM Method of [17]

∥K1∥ 0.2328 0.2506 0.2290 25.0840
∥K2∥ 0.0634 0.1221 0.0475 21.3810
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Example 6.4. This test problem is of a discrete shear beam model in multi–input control
system (see [14]) with n = 10 and p = 2. The data matrices are the following

M = In, D = diag(c1,    , cn), N =




2 −1 0    0 0
−1 2 −1    0 0
0 −1 2    0 0
...

...
...

. . .
...

...
0 0    −1 2 −1
0 0    0 −1 2



, B =


Ip

0(n−p)×p


,

where ck = 04 sin(kπ(n + 1)), k = 1,    , n. The open–loop system has 20 eigenvalues,
where the attempt is to assign the four eigenvalues −01291 ± 15063i,−01290 ± 13031i
of the open–loop system to the desired values −04 ± 15063i,−08 ± 13031i and leave
the remaining unchanged. The three methods LM, NM, and BM require 8, 6, and 11
iterations, respectively, to reach a local solution. The feedback matrices obtained by the
method BM are:

K
T
1,BM =




−1.7663 −0.1880
0.0809 −0.1177
0.6080 −0.1083
0.2777 0.5609

−0.5359 0.1497
−0.4899 −0.8287
0.4857 −0.1122
0.5287 1.0691

−0.3469 0.0337
−0.4048 −1.2030




, K
T
2,BM =




−0.8698 0.8900
−0.0405 −0.1388
0.0878 −0.0484

−0.2247 0.1302
−0.0747 −0.0394
0.4125 −0.2048
0.0305 0.2007

−0.5038 0.2788
−0.0030 −0.2711
0.4348 −0.2102




.

Table 4 shows the norms of computed feedback matrices together with that reported by
[14].

Table 4. Example 6.4: Norms of the feedback controllers

LM NM [28] BM Method of [14]

∥K1∥ 2.9170 2.7894 2.4742 3.3696
∥K2∥ 2.2807 1.5643 1.5470 2.3514

Example 6.5. This test problem is of a serially linked mass–spring system with the
following data matrices, where n = 15, p = 2; see [14, Example 4.5]:

M = I15,

D =




−1 −05 0    0
−05 −1 −05    0

0 −05 −1    0
...

...
...

. . .
...

0 0    −05 −05



, N =




200 −100 0    0
−100 200 −100    0

0 −100 200    0
...

...
...

. . .
...

0 0    −100 100



,

BT =


1 0 . . . 0 0 2
0 0 . . . 0 1 −3




The open–loop system has 30 eigenvalues, where the attempt is to assign the four eigen-
values 09138±28873i, 09362±03912i of the open–loop system to the desired eigenvalues
−04± 05171i,−01± 02813i and the remaining are kept unchanged. The three methods
LM, NM, and BM need 13, 30, and 23 iterations, respectively, to reach three dierent
local solutions of the considered problem. The feedback matrices obtained by the method
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BM are:

K
T
1,BM =




−0.2770 −0.5059
−0.0552 −0.9819
0.5424 −0.9528
0.8815 −0.8384
0.9492 −0.7872
0.9680 −0.6794
0.9477 −0.4588
0.7939 −0.1666
0.4570 0.0957
0.1107 0.3657

−0.1666 0.6846
−0.4306 1.0170
−0.8439 1.1669
−1.2680 1.0481
−0.7491 0.9908




, K
T
2,BM =




−0.6888 0.5936
−0.5119 0.4648
−0.3971 0.4093
−0.4285 0.5729
−0.4725 0.7224
−0.4498 0.7552
−0.3287 0.6452
−0.1642 0.4869
0.0299 0.2769
0.2177 0.0437
0.4342 −0.2315
0.6857 −0.5132
0.9476 −0.7939
0.9868 −0.9702
0.6110 −0.3186




.

Table 5 shows the norms of feedback matrices by the three methods together with that
reported by [14].

Table 5. Example 6.5: Norms of the achieved feedback controllers

LM NM [28] BM Method of [14]

∥K1∥ 4.7939 3.9081 3.8897 12.5429
∥K2∥ 4.8750 2.7145 3.0172 8.4406

The above examples quite show the performance of the considered least–square ap-
proach for solving the QEAP. In particular, the method BM successfully achieves feed-
back gain matrices with smaller norm magnitude compared with those obtained by cited
methods. This observation was dominant for almost all considered test problems.

In order to demonstrate the performance of the proposed methods further testing is
needed. However, to the best of the authors knowledge no benchmark test problems is
available for this problem class. For that purpose 21 test problems were collected from
dierent sources, where the methods LM and BM are compared vs. NM with respect to
number of iterations and the CPU–time; see Table 6. The abbreviation N.A. appears in the
last column of the table means not available. From the table one sees that sometimes the
three methods converge to the same local solution. However, in most cases they converge
to three dierent local solutions. The method NM fails in two instances; in one of them
the method fails to reach the stopping condition and in the second the existence of two
repeated desired eigenvalues was the reason of failure. In fact, from (19)–(20) the Hessian

of f is not dened at points where repeated desired eigenvalues λis exist. However,
repeated desired eigenvalues have no inuence on the two methods LM and BM, because
the former method skips the second term of the Hessian that causes this diculty and the
second uses a quasi–Newton Hessian update in such a case.

Table 7 summarizes the results of Table 6 and shows the average number of itera-
tions, the average CPU time and number of wins of achieving smaller norm magnitude of
computed controllers for the considered 21 test problems. The method LM has the best
performance w.r.t. the average number of iterations and CPU time, while the method BM
has the best performance of achieving least norm magnitudes of the computed feedback
controllers.

Conclusion

This work considers the quadratic eigenvalue assignment problem which is described as
a nonlinear least–squares problem. Levenberg–Marquardt method that uses a nonmono-
tone trust region combined with a line search backtracking strategy is proposed to nd
the local solution of the problem. Moreover, a logarithmic barrier interior–point method
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Table 6. Comparison between the methods LM, NM, and BM
on 21 test problems collected from dierent sources with respect
to number of iterations and computational CPU time.

Source Problem size LM NM [28] BM Cited methods
n p # it. CPU # it. CPU # it. CPU

∥K1∥ ∥K2∥ ∥K1∥ ∥K2∥ ∥K1∥ ∥K2∥ ∥K1∥ ∥K2∥
[13] 2 1 8 0.19 8 0.14 11 0.13

4.50 9.63 4.50 9.63 4.50 9.63 N.A. N.A.
[25] 2 1 5 0.05 6 0.08 5 0.08

5.99 8.62 5.99 8.62 5.97 5.68 6.09 8.05
[2] 2 2 9 0.08 6 0.09 12 0.03

3.32 3.18 3.35 3.89 3.36 3.82 3.17 4.75
[22] 3 1 10 0.28 15 0.14 13 0.14

0.96 0.65 0.97 0.64 0.96 0.65 N.A. N.A.
[17] 3 2 9 0.09 14 0.09 21 0.34

23.40 21.65 23.99 18.61 27.01 18.80 162.54 109.88
[10] 4 2 11 0.09 15 0.13 33 0.50

0.25 0.19 0.42 0.49 0.20 0.13 0.99 0.99
[3] 3 2 11 0.09 19 0.14 22 0.24

26.43 24.60 25.55 22.37 27.14 18.53 61.43 8.67
[8] 3 2 9 0.06 228 0.25 19 0.17

610.9 509.4 572.6 224.6 592.6 195.2 3.7e4 285.4
[16] 4 1 9 0.08 20 0.09 32 0.27

19.48 9.74 19.57 9.74 19.49 9.74 N.A. N.A.
[8] 5 2 6 0.17 7 0.17 12 0.67

4.01 2.07 4.03 2.08 3.67 2.21 84.79 43.39
[12] 5 2 10 0.21 F F 35 2.11

0.16 1.54 − − 0.22 1.94 0.70 0.37
[15] 3 2 6 0.06 9 0.14 10 0.13

1.56 0.82 1.51 0.74 1.47 0.66 11.62 2.01
[4] 4 2 6 0.06 6 0.08 6 0.14

3.58 1.98 3.62 1.95 3.58 1.70 N.A. N.A.
[5] 4 2 3 0.06 3 0.05 5 0.13

0.05 0.01 0.05 0.01 0.05 0.01 N.A. N.A.
[17] 5 3 9 0.11 7 0.16 7 0.6

0.23 0.06 0.25 0.12 0.22 0.05 25.08 21.38
[2] 10 2 8 0.19 7 0.19 48 0.38

2.91 2.28 2.78 1.56 3.0 1.24 3.60 2.71
[26] 10 3 7 0.27 6 0.20 19 0.38

0.44 0.35 0.49 0.32 0.46 0.35 0.69 0.17
[14] 10 2 8 0.25 17 3.56 11 3.77

2.91 2.28 2.78 1.56 2.47 1.54 3.60 2.72
[14] 15 2 13 0.36 20 0.33 112 1.60

4.87 4.97 3.99 3.71 3.96 3.64 8.44 4.02
[3] 50 2 11 2.70 49 2.60 70 3.90

1.41 1.98 1.26 1.74 0.59 0.60 3.41 3.41
[14] 100 2 22 8.41 F F 70 8.47

2.45 3.44 − − 1.67 1.53 6.79 6.82

Table 7. Comparison between the methods LM and BM vs. NM
on the considered 21 test problems with respect to average number
of iterations and average computational CPU time.

LM NM [28] BM

Average No. of iterations 9 44 27

Average CPU time (sec.) 0.66 0.75 1.12

No. of wins of smaller ∥K1∥ & ∥K2∥ 7 6 19
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is addressed to tackle an inequality constrained problem resulting from incorporating an
upper bound on the computed feedback controllers.

The considered approach is characterized by the following features:

• The least–squares problem formulation lies in the category of partial eigenvalue
assignment, where the problem structure allows to assign part or all eigenvalues
of the system.

• Levenberg–Marquardt method ideally cope with the considered problem. As the
control system is converted from second into rst order, the problem size is dou-
bled. However, the method has shown a good performance and was capable to
solve moderate large problems in a few seconds.

• Numerically, the proposed Levenberg–Marquardt method outperformed Newtons
method [28] with respect to number of iterations and the CPU time on 21 test
problems collected from dierent sources.

• Over the considered set of test problems the logarithmic barrier interior–point
method successfully achieved feedback controllers with smaller norm magnitude
than those obtained by their cited counterparts.

Conflict of interest

The authors declare that they have no conict of interest regarding the publication of
this article.

References

[1] Z.J. Bai, B.N. Datta and J. Wang. Robust and minimum norm partial quadratic eigenvalue

assignment in vibrating systems: A new optimization approach, Mechanical Systems and

Signal Processing, 24 (2010), 766-–783.

[2] Z.J. Bai, M. Lu and Q.Y. Wan. Minimum norm partial quadratic eigenvalue assignment for

vibrating structures using receptances and system matrices, Mechanical Systems and Signal

Processing, 112 (2018), 265-–279.

[3] Z.J. Bai, J.K. Yang and B.N. Datta. Robust partial quadratic eigenvalue assignment with

time delay using the receptance and the system matrices, Journal of Sound and Vibration,

384 (2016), 1–14.

[4] S. Brahma and B. Datta. An optimization approach for minimum norm and robust partial

quadratic eigenvalue assignment problems for vibrating structures, Journal of Sound and

Vibration, 324 (2009), 471—489.

[5] Y.F. Cai, J. Qian and S.F. Xu. The formulation and numerical method for partial quadratic

eigenvalue assignment problems, Numerical Linear Algebra with Applications, 18:4 (2011),

637-–652.

[6] L. Chen. A modied Levenberg–Marquardt method with line search for nonlinear equations,

Computational Optimization and Applications, 65 (2016), 753-–779.

[7] L. Chen and Y. Ma. A modied Levenberg–Marquardt method for solving system of nonlinear

equations, Journal of Applied Mathematics and Computing, 69 (2023), 2019-–2040.

[8] E.K. Chu. Pole assignment for second–order systems, Mechanical Systems and Signal Pro-

cessing, 16:1 (2002), 39-–59.

[9] F.H. Clarke. Optimization and nonsmooth analysis, John Wiley, New York, 1983.

[10] B.N. Datta, S. Elhay, Y.M. Ram and D.R. Sarkissian. Partial eigenstructure for the quadratic

pencil, Journal of Sound and Vibration, 230:1 (2000), 101–110.

[11] J.E. Dennis and R.B. Schnabel. Numerical methods for unconstrained optimization and non-

linear equations, SIAM, Philadelphia, 1996.
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