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A COLLECTION OF INEQUALITIES INVOLVING THE

LOGARITHMIC FUNCTION

A. KYRIAKIS

Abstract. The main topic of this article is the derivation of interpolation

inequalities involving logarithmic functions. There are eight inequalities pre-

sented in this manuscript which involve logarithmic functions of a single real

variable. The results are novel and the approach taken to obtain the results

relies purely on functional inequalities and not on monotonicity properties or

series expansions as other works in the literature. Logarithmic functions are

ubiquitous in Mathematics, and one could think of Analytic Number Theory

where these class of functions appears a lot. It is a contemporary research

area to nd appropriate estimates, and this work was strongly motivated and

intensely infuenced by the works of Bagul-Chesneau and Kostic. This article

demonstrates the elegance of integral inequalities, and using these integral in-

equalities in a smart way enables to generate logarithmic inequalities avoiding

the computational challenges that the monotonicity approach imposes. All

the results have been rigorously proved theoretically and there are graphical

demonstrations that verify the theory behind the obtained inequalities.

1. Introduction

In this work, some novel interpolation inequalities are presented involving logarithmic
functions. Logarithmic functions are ubiquitous in various branches of mathematics (i.e.
analytic number theory [1], [6], [12], [9]) and being able to nd proper estimates involving
these functions is a contemporary research area [2], [3],[4], [5], [10], [11], [14], [13]. In order
to prove the results in this article, there is reliance only on integral inequalities, avoiding
to use monotonicity techniques as it is the most dominant technique in the literature.
The approach taken fully diverges from what exists in the literature, using only Schwarz-
Cauchy, Hölder, and Chebyshev integral inequalities. The inequalities derived are original,
and to the knowledge of the author such inequalities do not appear in the literature,
comparing with classical works of [7],[8],[15], [16]. The motivation for the author to
produce this work comes from the works of Chesneau-Bagul [3], and Kostic [10]. These
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works had a positive impact on the author to produce new estimates involving logarithmic
functions. More precisely, inequality (2) is a sharp bound for the logarithmic function and
simpler compared to the Chesneau-Bagul bound. The other estimates are non-trivial and
serve as an excellent enrichment on the literature of logarithmic inequalities. The article
is organized in a particular manner. Firstly, the main results are presented, then rigorous
proofs of the inequalities follow in a separate section. There is a third section, where the
inequalities are graphically represented. Last but not least, there is a section of conclusions
and remarks.

2. Main Results
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Theorem 2.7.
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Theorem 2.8.
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3. Rigorous proofs of the main results

In this section, all the inequalities are derived using rigorous proofs.

3.1. Proof of Theorem 1.



4 A. KYRIAKIS EJMAA-2025/13(2)

Proof. Let I(x) = ln(x+ 1)(x+ 1)2, DI = [0,+∞[. Then it follows that
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3.2. Proof of Theorem 2.
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Proof. From fundamental theorem of Calculus, ln(x + 1) =
 x

0
1

t+1
dt, t ∈ (0, x), x ∈

[0,+∞[. Consequently, this yields
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and the proof is complete. □

3.3. Proof of Theorem 3.

Proof. Let f(t) = exp(t) and d(x) = ln(x+ 1), t ∈ (0, d(x)), x ∈ (0,+∞). Then
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by employing the triangle inequality and Hölder’s inequality. Consequently, the inequality
obtained is
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Chosing Hölder exponents p = 20, q = 21, r = 22 yields the nal result
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3.4. Proof of Theorem 4.
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Proof. Let f(t) = exp(t) and d(x) = ln(x+ 1), t ∈ (0, d(x)), x ∈ (0,+∞). Then
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by employing the triangle inequality and Hölder’s inequality. The inequality takes the
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Choosing p = 2, q = 3, r = 5, the nal estimate is obtained
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4. Proof of Theorem 5
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(x+ 1)
q

q−1 − 1
 q−1

q

×


1

r + 1

 1
r

r − 1

r

 r−1
r 

(x+ 1)
r

r−1 − 1
 r−1

r

× (ln(x+ 1))
p+1
p

+ q+1
q

+ r+1
r .

Pick p = q = r = 2, and the above estimate becomes

| ln(x+ 1)(x+ 1)− x| 3 ≤ (ln(x+ 1))
9
2


1

6

 3
2 

x2 + 2x
 3

2 , ∀ x ∈ [0,+∞[.

□
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5. Proof of Theorem 6

Proof. Consider f(t) = t, t ∈ (0, d(x)), d(x) = ln(x+ 1), x ∈ (0,+∞). Then

 d(x)

0

f ′(t)

1 + t
dt =

 f(t)

1 + t

d(x)
0

−
 d(x)

0

f(t)


1

1 + t

′
dt

=
f(d(x))

1 + d(x)
− f(0) +

 d(x)

0

f(t)(1 + t)−2dt

≤ f(d(x))

1 + d(x)
− f(0) +

 d(x)

0

|f |pdt
 1

p
 d(x)

0

(1 + t)
− 2p

p−1 dt

 p−1
p

=
f(d(x))

1 + d(x)
− f(0) +

 d(x)

0

|f |pdt
 1

p 
p− 1

p+ 1

 p−1
p


1− (d(x) + 1)

−(p+1)
(p−1)

 p−1
p

=
ln(x+ 1)

1 + ln(x+ 1)
+


p− 1

p+ 1

 p−1
p


1

p+ 1

 1
p

(ln(x+ 1))
p+1
p


1− (ln(x+ 1) + 1)

− (p+1)
(p−1)

 p−1
p

.

Consequently, the inequality reads

ln(ln(x+1)+1) ≤ ln(x+ 1)

1 + ln(x+ 1)
+


p− 1

p+ 1

 p−1
p


1

p+ 1

 1
p

(ln(x+1))
p+1
p


1− (ln(x+ 1) + 1)

− (p+1)
(p−1)

 p−1
p

.

By picking p = 3, the desired result follows

ln(ln(x+1)+1) ≤ ln(x+ 1)

1 + ln(x+ 1)
+


1

16

 1
3

(ln(x+1))
4
3

1− (ln(x+ 1) + 1)−2 2

3 , ∀ x ∈ [0,+∞[.

□
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6. Proof of Theorem 7

Proof. Consider the function λ(x) = 1
2
ln


ax2 + 1

 
bx2 + 1

 
cx2 + 1

 
dx2 + 1


, x ∈

[0,+∞[, a, b, c, d ∈]0,+∞[. Then, it follows

1

2
ln


ax2 + 1

 
bx2 + 1

 
cx2 + 1

 
dx2 + 1



= ln


ax2 + 1

+ ln


bx2 + 1


+ ln


cx2 + 1


+ ln


dx2 + 1



=

 x

0

1√
at2 + 1

a t√
at2 + 1

dt+

 x

0

1√
bt2 + 1

b t√
bt2 + 1

dt

+

 x

0

1√
ct2 + 1

c t√
ct2 + 1

dt+

 x

0

1√
dt2 + 1

d t√
dt2 + 1

dt

≤
 x

0


1√

at2 + 1

2

dt

 1
2
 x

0


a t√

at2 + 1

2

dt

 1
2

+

 x

0


1√

bt2 + 1

2

dt

 1
2
 x

0


b t√

bt2 + 1

2

dt

 1
2

+

 x

0


1√

ct2 + 1

2

dt

 1
2
 x

0


c t√

ct2 + 1

2

dt

 1
2

+

 x

0


1√

d t2 + 1

2

dt

 1
2
 x

0


d t√

dt2 + 1

2

dt

 1
2

= a
−1
4


arctan

√
ax

 
ax− a

1
2 arctan

√
ax



+ b
−1
4


arctan

√
bx

 
bx− b

1
2 arctan

√
bx



+ c
−1
4


arctan

√
cx

 
cx− c

1
2 arctan

√
cx



+ d
−1
4


arctan

√
dx

 
dx− d

1
2 arctan

√
d x


.

By making the choice for the coecients to be a = 2, b = 3, c = 5, d = 7, the nal estimate
is obtained

1

2
ln


2x2 + 1

 
3x2 + 1

 
5x2 + 1

 
7x2 + 1



≤ 2
−1
4


arctan

√
2x

 
2x− 2

1
2 arctan

√
2x



+3
−1
4


arctan

√
3x

 
3x− 3

1
2 arctan

√
3x



+5
−1
4


arctan

√
5x

 
5x− 5

1
2 arctan

√
5x



+7
−1
4


arctan

√
7x

 
7x− 7

1
2 arctan

√
7x


.

□
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7. Proof of Theorem 8

Proof. Let f(t) = arctan(t), g(t) = t, t ∈ (0, x).Taking into account that both functions
are monotonically increasing, it follows

 x

0

f(t)dt

 x

0

g(t)dt ≤ x

 x

0

f(t)g(t)dt Chebyshev integral inequality

⇒ x3

2
arctan(x)− x2

4
ln


x2 + 1


≤ x3

2
arctan(x)− x2

2
+

x

2
arctan(x)

⇒ x2

2
− x

2
arctan(x) ≤ x2

4
ln


x2 + 1



⇒ 2x(x− arctan(x)) ≤ x2 ln

x2 + 1



and the proof is complete. □

8. Graphical evidence

In this section, inequalities are also veried using graphs. These illustrations conrm
the rigorous proofs developed in the rst section. All the graphs follow.

9. Conclusions and remarks

In this work, inequalities involving logarithmic functions have been derived with the
help of integral-type inequalities. The inequalities are nontrivial and serve as a good
enrichment of the literature of mathematical inequalities. All the estimates have been
derived using purely functional inequalities and not relying on monotonicity techniques.
Here are the comments for each one of the inequalities:

• Inequality (1): The logarithmic function is bounded by the product of various
other functions, and some of them are square rooted. More precisely, at the
right hand side there is a combination of monomial, polynomial, exponential,
logarithmic and arctangent functions. Such inequality is novel in the literature.
The inequality is sharp for small values of x and then becomes less sharp as x
grows larger.

• Inequality (2): This is a sharp inequality for the logarithmic function, and the
estimate is simpler compared to the one proposed by Chesneau-Bagul [3] where
there is the arctan function at the right hand side of the inequality. Chesneau-
Bagul bound is sharper than this bound for small x but as x grows larger, the
estimate is better than the Bagul-Chesneau estimate. A future work would focus
on nding optimal Hölder exponents to make the bound more sharp.

• Inequality (3): The identity function is bounded by sum of terms where there is
the logarithmic function raised to fractional power and multiplied by the argument
into a fractional power minus a constant. There are two remarks to be made: 1.
the inequality is sharp, 2. the right hand side of the inequality is an interesting
function as the various combinations of logarithmic functions to a fractional power
multiplied by linear terms to a fractional power give a linear approximation. The
Hölder exponents can control the sharpness of the inequality.

• Inequality (4): The left hand side of the inequality is the product of logarithmic
function times a linear function minus the identity function, all this in modulus.
The right hand side has a slight resemblance to the right hand side of (3) but the
constants are dierent. This is an interpolation inequality and it is sharp.

• Inequality (5): This is an interpolation inequality. The left hand side of the in-
equality has the function mentioned in (4) (left hand side) raised to the cubic
power. The right hand side has a constant coming from Hölder integration, mul-
tiplied by the logarithmic function raised to a fractional power , then multiplied
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by a polynomial function in a fractional power. This interpolation inequality is
sharp, veried by the appropriate graph.

• Inequality (6):The left hand side is a nested logarithmic function bounded by the
sum of two terms containing the logarithmic function. The inequality is sharp for
small values of x and as x grows larger then the inequality becomes less sharp.

• Inequality (7): The left hand side of the inequality is a logarithmic function where
the argument is a product of polynomials of degree two. This function is bounded
by a function containing terms with arctangent functions which are square rooted.
The inequality is sharp for small values of x and becomes less sharp as x becomes
larger.

• Inequality (8): This inequality is derived using the Chebyshev integral inequality.
The left hand side is a parabola multiplied by the logarithmic function. The
right hand side consists of a linear function multipled by the dierence between
the identity and arctan function. This inequality could also be proved using
monotonicity properties. A future work would include the derivation of sharper
estimates and more novel involving logarithmic functions.

To conclude this work, the following statement could be made: New inequalities can arise
by combining various integral inequalities, and these combinations could determine how
sharp these are. Additionally, when using the Hölder inequality, nding the appropriate
exponents to optimize the inequalities could be a potential type of research.

Figure 1. Graphical representation of estimate (1)
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Figure 2. Graphical representation of estimate (2)

Figure 3. Graphical representation of estimate (3)
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